
(12) United States Patent 

US0097.15506B2 

(10) Patent No.: US 9,715,506 B2 
Rosen et al. (45) Date of Patent: Jul. 25, 2017 

(54) METADATA INJECTION OF CONTENT (56) References Cited 
ITEMS USING COMPOSITE CONTENT 

U.S. PATENT DOCUMENTS 

(71) Applicant: Smart Screen Networks, Inc., 7,677,896 B1* 3/2010 Sonwalkar ............... GO9B 7 OO 
Encinitas, CA (US) 434,236 

2006/0230331 A1* 10, 2006 Abanami ............... G06Q 30/02 
(72) Inventors: Stephen D. Rosen, San Diego, CA T15,234 

(US); John Stallings, San Diego, CA 29.892. A 1929 Rezlaff. GO6F 17,30657 
(US); Robert A. Strickland, San 2008/0269931 A1* 10, 2008 Martinez ........... GO6F 17,30026 
Diego, CA (US); Jeff Symon, San TOO.94 ego, s ymon, 2009/0157289 A1* 6/2009 Graessley ................. B6OL 3/12 
Diego, CA (US); Kyle David TO1,123 
Strickland, San Diego, CA (US) 2011 0131497 A1* 6, 2011 Goran ................... G06F 3/0481 

71.5/723 
(73) Assignee: Smart Screen Networks, Inc., 2013/0076771 A1* 3, 2013 Bachman ........... G06Q 30/0643 

Encinitas, CA (US) 345,581 
2013/0230205 A1* 9/2013 Nuggehalli .......... GO6K 9,2054 

(*) Notice: Subject to any disclaimer, the term of this 382/100 
patent is extended or adjusted under 35 * cited by examiner 
U.S.C. 154(b) by 0 days. 

Primary Examiner — Dinku Gebresenbet 
(21) Appl. No.: 14/885,924 (74) Attorney, Agent, or Firm — Procopio Cory 

Hargreaves and Savitch LLP: Pattric J. Rawlins; Jonathan 
(22) Filed: Oct. 16, 2015 Cheng 

(65) Prior Publication Data (57) ABSTRACT 

US 2017/O109349 A1 Apr. 20, 2017 Injection of metadata using composite content. In an 
embodiment, one or more content items are received, and 

(51) Int. Cl. data is retrieved from a plurality of metadata sources. A p 
G06F 7/30 (2006.01) visual depiction of metadata is generated for at least one of 

(52) U.S. Cl. the content item(s) based on the retrieved data. A composite p 
CPC ...... G06F 17/3012 (2013.01); G06F 17/3082 content item is generated to comprise at least a portion of 

(2013.01); G06F 17/30268 (2013.01) each of the content item(s) and the visual depiction of the 
(58) Field of Classification Search metadata. 

CPC ................................................. G06F 17/30657 
See application file for complete search history. 

Internal System 

19 Claims, 9 Drawing Sheets 

Database(s) 
112 

Server(s) 
140A 110 

External System 
150 

Network(s) 
12O 

User System 
130 

Internal System 
14OB 

Application 
132 

Local Database 
134 



U.S. Patent Jul. 25, 2017 Sheet 1 of 9 US 9,715,506 B2 

Database(s) 
112 

Server(s) 
110 

Internal System 

L 140A 

External System 

L 150 

User System 
130 

Internal System 
14OB 132 L"t" 134 

FIG. 1 

  

  

  

    

  



U.S. Patent Jul. 25, 2017 Sheet 2 of 9 US 9,715,506 B2 

Third-Party Platform 240 

Content tem 
to be 

injected 
Notification of Notification of 

Successful injection Successful storage 
and/or metadata- and/or injected 
injected content metadata 

Metadata Platform 200 

Metadata SDK 210 Metadata Server 110 
Metadata 

Metadata Sources 220 injected -0. Storage Destinations 230 
Content tem 

FIG 2 

  

  

  

  

  



U.S. Patent Jul. 25, 2017 Sheet 3 of 9 US 9,715,506 B2 

Content tem 
3O2 

Audio-to-Text Weather 
310 345 

NeWS 
Authorship 315 350 

Authentication/ Sensor(s) 
355 BiometriCS 391 

Closed Captions Object 
Recognition 360 

320 

ADC 
Reference A 365 
Database Metadata-injection 

392 Module 
3OO ContactS 

370 
User Interface 

325 
ASSet 
375 

User input 
393 DRM 

38O 

Time 
330 

Ouick Tag 
385 

LOCation 
335 

POS 
Scheduling 390 

340 

FIG. 3 Metadata-injected 
Content tem 

3O4. 

  

  



U.S. Patent Jul. 25, 2017 Sheet 4 of 9 US 9,715,506 B2 

Receive Content item 
410 

Determine metadata Source(s) 
42O 

NO 
Remaining metadata 

Sources? 
430 

ASSociate retrieved 
Retrieve metadata from 

metadata with received 
next metadata Source 

440 
Content item 

450 

End 

FIG. 4 

  

  



U.S. Patent Jul. 25, 2017 Sheet 5 Of 9 US 9,715,506 B2 

Receive Content item 
510 

Time of Content item within 
time period of scheduling 

information? 
52O 

Generate metadata from scheduling information 
53O 

ASSociate the metadata with received Content item 
540 

F.G. 5 

  



U.S. Patent Jul. 25, 2017 Sheet 6 of 9 US 9,715,506 B2 

Receive COntent item 
610 

Determine metadata source(s) 
62O 

ASSociate all acquired NO 
metadata with content 

Any remaining metadata 
Source(s)? 

item 630 
650 

O End D Acquire metadata from next metadata source 
640 

Acquired 
metadata comprises input(s) to 
additional metadata source(s)? 

660 

Yes 

Acquire metadata from additional 
metadata Source(s) using input(s) 

670 

FIG. 6 

  

  

  

  



U.S. Patent Jul. 25, 2017 Sheet 7 Of 9 US 9,715,506 B2 

Receive Content item 
71O 

Time of Content item within 
time period of scheduling 

information? 
72O 

Determine metadata Sources from Scheduling 
information 

73O 

End 

FIG. 7 

  



U.S. Patent Jul. 25, 2017 

u-1s 

PrOCeSSOr 
N / 810 

/ N. Main Memory 
N / 815 

f 
O 
OO 
v / 
? N 

S 
I/O Interface 

g 835 
s 

S 
S 
S Communication / 

Interface 840 \ 

— Baseband 
N / 860 

Nu-1 

Sheet 8 of 9 

Secondary Memory 
82O 

Removable 
Medium 830 

855 

Radio 
865 

FIG. 8 

US 9,715,506 B2 

External Medium 
845 

Antenna 
87O 

  

  



U.S. Patent Jul. 25, 2017 Sheet 9 Of 9 US 9,715,506 B2 

Component Content 
Item 1 

Component Content 
Item 2 

Visual Depiction of 
Metadata 1 

Visual Depiction of 
Metadata 2 

Metadata-injected Content Item 304 

Component Content 
Item N 

Visual Depiction of 
Metadata M 

FIG. 9 



US 9,715,506 B2 
1. 

METADATA INUECTION OF CONTENT 
ITEMS USING COMPOSITE CONTENT 

CROSS-REFERENCE TO RELATED 
APPLICATIONS 

This application is related to U.S. patent application Ser. 
No. 147731,260, filed Jun. 4, 2015, which is a continuation 
of U.S. patent application Ser. No. 14/323,738, filed Jul. 3, 
2014 and issued as U.S. Pat. No. 9,058,375 on Jun. 16, 2015, 
which is a national stage entry of International Patent App. 
No. PCT/US2014/059764, and is also related to Interna 
tional Patent App. No. PCT/US2014/054383, the entireties 
of all of which are hereby incorporated herein by reference. 

BACKGROUND 

Field of the Invention 
The embodiments described herein are generally directed 

to metadata, and, more particularly, to the addition of 
descriptive metadata to digital media. 

Description of the Related Art 
Digital media generally referred to herein as “con 

tent—can take a variety of forms, including images (e.g., 
JPEG, GIF, BMP, etc.), video recordings (e.g., MPEG-4, 
AVI, MOV, etc.), audio recordings (e.g., WAV, MP3, WMA, 
etc.), text (TXT, XML, HTML, etc.), combinations of dif 
ferent forms (e.g., Microsoft WordTM, Microsoft Power 
pointTM, Portable Document Format (PDF), etc.), and other 
forms of data. When content is owned and/or is associated 
with a right to use, the content may be referred to as a 
“digital asset.” However, as used herein, the term “content” 
or “content item' (a specific instance of content) includes 
any type of media, regardless of whether or not it comprises 
a digital asset. 

"Metadata,” which is often defined as “data about data, 
is used herein to designate descriptive or technical informa 
tion that is embedded in or otherwise associated with the 
data (e.g., file or files) embodying content. Technical meta 
data refers to information about the technical properties of 
the content, such as an identifier of the device that was used 
to capture the content, a resolution of the content, a time 
stamp representing the date and time on which the content 
was created and/or modified, a format of the content, etc. 
Descriptive metadata, on the other hand, refers to informa 
tion describing the content, such as the names of individuals 
who appear in the content, an author or producer of the 
content, a rating of the content, a narrative description of the 
content, keywords that are relevant to the content, etc. 
Descriptive metadata is particularly useful for organizing, 
categorizing, and searching content. For example, a search 
engine may be configured to parse the descriptive metadata 
associated with a content item to determine whether the 
content item is relevant to a particular search query (e.g., if 
any text in the descriptive metadata match any keywords in 
the search query). 

Currently, there are a number of commonly-used stan 
dards for storing metadata in association with content. For 
example, Exchangeable Image File Format (EXIF) is a 
standard that specifies the formats for images, sound, and 
ancillary tags used by digital cameras (including Smart 
phones), Scanners, and other media-capturing devices. EXIF 
defines a number of metadata tags or fields into which 
metadata, including technical and descriptive metadata, can 
be entered. In EXIF, metadata is embedded within the 
content file itself. Another example standard is the Interna 
tional Press Telecommunications Council (IPTC) Informa 

10 

15 

25 

30 

35 

40 

45 

50 

55 

60 

65 

2 
tion Interchange Model (IIM), which has been largely super 
seded by the Extensible Metadata Platform (XMP). XMP is 
an open-source standard for the creation, processing, and 
interchange of standardized and custom metadata for all 
kinds of resources. XMP can be embedded in many types of 
file formats, such as JPEG, Tagged Image File Format 
(TIFF), and Portable Document Format (PDF), but can also 
be stored separately as a “sidecar file to content. Generally, 
metadata stored using these formats comprise copyright 
information, credits, creation date, creation location, Source 
information, comments, special format instructions, etc. 
Whereas technical metadata can generally be automati 

cally created and associated with content (e.g., during cre 
ation of the content), descriptive metadata is much less 
conducive to automatic generation and association. Conven 
tionally, descriptive metadata must be manually entered and 
associated with content. For example, typically, for each 
individual content item, a content creator must select the 
content item and manually enter descriptive metadata to be 
associated with that content item, using a keyboard, touch 
pad, or other input device. For individuals or other entities 
(e.g., entertainment, film production, news, or broadcasting 
companies) that generate a lot of content, the generation and 
association of descriptive metadata with the created content 
can be inefficient, time-consuming, and otherwise burden 
SO. 

For instance, with the advent of Smartphones, tablets, and 
other digital devices and the decreasing cost of storage, the 
Volume of content produced by users in the consumer 
market has exploded in recent years. A typical user of Such 
devices may produce tens of thousands of content items. 
Over time, the majority of users do not bother to expend the 
effort necessary to manually add descriptive metadata to 
each content item. Furthermore, commonly-available appli 
cations, which may provide functions for adding metadata to 
content, do not provide the ability to add descriptive meta 
data in bulk. Instead, a user must wade through an ocean of 
content items and manually add descriptive metadata to each 
individual content item. 

Moreover, conventional applications are not conducive to 
the addition of metadata in the moment. For example, many 
users take pictures in Social situations, on vacations, during 
sporting events, and/or in other hurried environments, in 
which it is not convenient or appropriate for the user to stop 
for the length of time necessary to manually enter metadata. 
Thus, the entry of metadata is typically significantly 
delayed. This problem has been exacerbated with the advent 
of cameras with fast shutters, which can take multiple 
images per second, and which can produce hundreds of 
images in a short period of time. Content creators may often 
find themselves with hundreds or thousands of content 
items, each with generic names (e.g., assigned by the camera 
or other device), limited technical metadata, and little or no 
descriptive metadata. 
The burden associated with manually entering metadata 

and the deficiencies in prior art applications has frustrated 
the ability of descriptive metadata to keep up with the 
ever-increasing volume of content that is generated today. In 
turn, this lack of descriptive metadata hinders the ability to 
search, organize, and enjoy such content. What are needed 
are improved processes and systems for adding descriptive 
metadata to content items. Embodiments should be user 
friendly, automatic or semi-automatic, and/or capable of 
being performed in bulk. Such improved processes and 
systems can facilitate the Subsequent organization, Sorting, 
and searching of the content items, thereby improving a 
user's experience of those content items. 



US 9,715,506 B2 
3 

SUMMARY 

In an embodiment, a method is disclosed. The method 
comprises using at least one hardware processor to: receive 
one or more content items; retrieve data from a plurality of 
metadata sources; generate a visual depiction of metadata 
for at least one of the one or more content items based on the 
retrieved data; and generate a composite content item com 
prising at least a portion of each of the one or more content 
items and the visual depiction of the metadata. 

In another embodiment, a system is disclosed. The system 
comprises: at least one hardware processor, and one or more 
software modules that, when executed by the at least one 
hardware processor, receive one or more content items, 
retrieve data from a plurality of metadata sources, generate 
a visual depiction of metadata for at least one of the one or 
more content items based on the retrieved data, and generate 
a composite content item comprising at least a portion of 
each of the one or more content items and the visual 
depiction of the metadata. 

In another embodiment, a non-transitory computer-read 
able medium is disclosed. The medium has instructions 
stored thereon, wherein the instructions, when executed by 
a processor, cause the processor to: receive one or more 
content items; retrieve data from a plurality of metadata 
Sources; generate a visual depiction of metadata for at least 
one of the one or more content items based on the retrieved 
data; and generate a composite content item comprising at 
least a portion of each of the one or more content items and 
the visual depiction of the metadata. 

BRIEF DESCRIPTION OF THE DRAWINGS 

The details of the present invention, both as to its structure 
and operation, may be gleaned in part by study of the 
accompanying drawings, in which like reference numerals 
refer to like parts, and in which: 

FIG. 1 illustrates an environment in which the disclosed 
systems, modules, and processes may operate, according to 
an embodiment; 

FIG. 2 illustrates the operation of a metadata platform 
with respect to third-party applications and platforms, 
according to an embodiment; 

FIG. 3 illustrates a metadata injection module, according 
to an embodiment; 

FIG. 4 illustrates a process of injecting metadata into a 
content item, according to an embodiment; 

FIG. 5 illustrates a process for associating scheduled 
metadata with content item(s), according to an embodiment; 

FIG. 6 illustrates a process for aggregating metadata from 
multiple metadata sources, according to an embodiment; 

FIG. 7 illustrates a process for scheduling metadata 
Sources, according to an embodiment; 

FIG. 8 illustrates a processing system on which one or 
more of the processes described herein may be executed, 
according to an embodiment; and 

FIG. 9 illustrates a composite metadata-injected content 
item, according to an embodiment. 

DETAILED DESCRIPTION 

In an embodiment, systems and methods are disclosed for 
adding descriptive metadata to content items, for example, 
to organize and facilitate searches for the content items once 
they are stored. As used herein, the terms “content,” “content 
item,” or “content items’ may refer to any type of content, 
including, without limitation, images (e.g., photographs, 

5 

10 

15 

25 

30 

35 

40 

45 

50 

55 

60 

65 

4 
collages, digital artwork, etc.), video recordings, audio 
recordings, animations, slideshows, electronic documents 
(e.g., spreadsheets, word-processing documents, PDF docu 
ments, etc.), etc. In embodiments, the addition of the 
descriptive metadata may be performed automatically or 
semi-automatically by a computing device. Such as a Smart 
phone, tablet, laptop, desktop, server, wearable device, 
drone, or other processing device. 

After reading this description, it will become apparent to 
one skilled in the art how to implement the systems and 
methods in various alternative embodiments and alternative 
applications. However, although various embodiments will 
be described herein, it is understood that these embodiments 
are presented by way of example and illustration only, and 
not limitation. As such, this detailed description of various 
embodiments should not be construed to limit the scope or 
breadth of the present application as set forth in the 
appended claims. 

1. System Overview 
1.1. Infrastructure 
FIG. 1 illustrates an example infrastructure in which the 

disclosed system may operate, according to an embodiment. 
The infrastructure may comprise one or more server(s) 110 
to host and/or execute one or more of the various functions, 
processes, methods, and/or software modules described 
herein. Server(s) 110 may comprise one or more servers or 
cloud interfaces or instances, which utilize shared resources 
of one or more servers. In addition, the infrastructure may 
comprise one or more user systems 130 which host and/or 
execute one or more of the various functions, processes, 
methods, and/or software modules described herein. User 
system(s) 130 may host at least Some modules of an appli 
cation, according to embodiments disclosed herein, and/or a 
local database. Server(s) 110 may be communicatively con 
nected to user system(s) 130 via one or more network(s) 120 
and may also be communicatively connected to one or more 
database(s) 112 (e.g., via one or more network(s). Such as 
network(s) 120) and/or may comprise one or more 
database(s) 112. In addition, server(s) 110 may be commu 
nicatively connected to (e.g., via an intranet) or comprise 
one or more internal systems 140, and/or may be commu 
nicatively connected to one or more external systems 150 
via network(s) 120. Network(s) 120 may comprise the 
Internet, and 
server(s) 110 may communicate with user system(s) 130 
and/or external system(s) 150 through the Internet using 
standard transmission protocols, such as HyperText Transfer 
Protocol (HTTP), Secure HTTP (HTTPS), File Transfer 
Protocol (FTP), FTP Secure (FTPS), Secure Shell FTP 
(SFTP), and the like, as well as proprietary protocols. 

It should be understood that the components (e.g., servers, 
databases, and/or other resources) of server(s) 110 may be, 
but are not required to be, collocated. Furthermore, while 
server(s) 110 are illustrated as being connected to various 
systems through a single set of network(s) 120, it should be 
understood that server(s) 110 may be connected to the 
various systems via different sets of one or more networks. 
For example, server(s) 110 may be connected to a subset of 
user systems 130 via the Internet, but may be connected to 
one or more other user systems 130 via an intranet. It should 
also be understood that user system(s) 130 may comprise 
any type or types of computing devices, including without 
limitation, desktop computers, laptop computers, tablet 
computers, Smart phones or other mobile phones, servers, 
wearable devices (e.g., Google GlassTM, Apple WatchTM, 
etc.), drones, game consoles, televisions, set-top boxes, 
electronic kiosks, and the like. Such user system(s) 130 may 
comprise image acquisition devices, such as a camera, 



US 9,715,506 B2 
5 

scanner, and the like, which are able to acquire images, 
including photographs and/or video. While it is contem 
plated that such devices are capable of wired or wireless 
communication, this is not a requirement for all embodi 
ments. In addition, while only a few user systems 130, a few 
internal systems 140, a few external systems 150, one set of 
server(s) 110, and one set of database(s) 112 are illustrated, 
it should be understood that the network may comprise any 
number of user system(s), internal system(s), external sys 
tem(s), sets of server(s), and database(s), including, in some 
instances, Zero (e.g., no external systems and/or no internal 
systems). 

Server(s) 110 may comprise web servers which host one 
or more websites or web services. In embodiments in which 
a website is provided, the website may comprise one or more 
user interfaces, including, for example, webpages generated 
in HTML or other language. Server(s) 110 transmit or serve 
these user interfaces as well as other data (e.g., a download 
able copy of or installer for application 132) in response to 
requests from user system(s) 130. In some embodiments, 
these user interfaces may be served in the form of a wizard, 
in which case two or more user interfaces may be served in 
a sequential manner, and one or more of the sequential user 
interfaces may depend on an interaction of the user or user 
system with one or more preceding user interfaces. The 
requests to server(s) 110 and the responses from server(s) 
110, including the user interfaces and other data, may both 
be communicated through network(s) 120, which may 
include the Internet, using standard communication proto 
cols (e.g., HTTP, HTTPS). These user interfaces or web 
pages, as well as the user interfaces provided by application 
132 executing on a user system 130, may comprise a 
combination of content and elements, such as text, images, 
Videos, animations, references (e.g., hyperlinks), frames, 
inputs (e.g., textboxes, text areas, checkboxes, radio buttons, 
drop-down menus, buttons, forms, etc.), Scripts (e.g., 
JavaScript), and the like, including elements comprising or 
derived from data stored in one or more databases that are 
locally and/or remotely accessible to user system(s) 130 
and/or server(s) 110. 

Server(s) 110 may further comprise, be communicatively 
coupled with, or otherwise have access to one or more 
database(s) 112. For example, server(s) 110 may comprise 
one or more database servers which manage one or more 
databases 112. A user system 130 or application executing 
on server(s) 110 may submit data (e.g., user data, form data, 
etc.) to be stored in database(s) 112, and/or request access to 
data stored in such database(s) 112. Any suitable database 
may be utilized, including without limitation MySQLTM, 
OracleTM IBMTM, Microsoft SQLTM, SybaseTM, AccessTM, 
and the like, including cloud-based database instances and 
proprietary databases. Data may be sent to server(s) 110, for 
instance, using the well-known POST request supported by 
HTTP, via FTP, etc. This data, as well as other requests, may 
be handled, for example, by server-side web technology, 
such as a servlet or other software module, executed by 
server(s) 110. 

In embodiments in which a web service is provided, 
server(s) 110 may receive requests from user system(s) 130, 
and provide responses in eXtensible Markup Language 
(XML) and/or any other suitable or desired format. In such 
embodiments, server(s) 110 may provide an application 
programming interface (API) which defines the manner in 
which user system(s) 130 may interact with the web service. 
Thus, user system(s) 130, which may themselves be servers, 
can define their own user interfaces, and rely on the web 
service to implement or otherwise provide the backend 

10 

15 

25 

30 

35 

40 

45 

50 

55 

60 

65 

6 
processes, methods, functionality, storage, etc., described 
herein. For example, in Such an embodiment, a client 
application (e.g., application 132) executing on one or more 
user system(s) 130 may interact with a server application 
executing on server(s) 110 to execute one or more or a 
portion of one or more of the various functions, processes, 
methods, and/or software modules described herein. The 
client application may be “thin,” in which case processing is 
primarily carried out server-side by platform 110. A basic 
example of a thin client application is a browser application, 
which simply requests, receives, and renders web pages at 
user system(s) 130, while server(s) 110 are responsible for 
generating the web pages and managing database functions. 
Alternatively, the client application may be “thick,” in which 
case processing is primarily carried out client-side by user 
system(s) 130. It should be understood that the client appli 
cation may perform an amount of processing, relative to 
server(s) 110, at any point along this spectrum between 
“thin' and “thick.’ depending on the design goals of the 
particular implementation. In any case, the application, 
which may wholly reside on either server(s) 110 or user 
system(s) 130 or be distributed between server(s) 110 and 
user system(s) 130, can comprise one or more executable 
software modules that implement one or more of the pro 
cesses, methods, or functions of the application(s) described 
herein. 

In an embodiment, server(s) 110 comprise or are com 
municatively connected to one or more internal systems 
140A, and/or communicatively connected to one or more 
external systems 150. Server(s) may communicate with 
internal system(s) 140A and/or external system(s) 150 using 
standard communication protocols. Server(s) may “pull” 
information (e.g., metadata, data from which metadata is 
derived, etc.) from one or more of system(s) 140A and/or 
150, for example, by sending a request for data to the 
system, and receiving the requested data in response to the 
request. Alternatively or additionally, one or more of 
system(s) 140A and/or 150 may “push’ information (e.g., 
metadata, data from which metadata is derived, etc.) to 
server(s) 110 periodically (e.g., at a given frequency, such as 
every second, every hour, etc., in response to receiving 
updated data requested or otherwise indicated as desired by 
server(s) 110, etc.). As an example, system(s) 140A and/or 
150 may stream such information to be used as metadata by 
server(s) 110 to server(s) 110 in real time. This information 
may include, without limitation, current weather data (e.g., 
temperature, humidity, wind speed, whether Sunny, cloudy, 
rainy, Snowy, etc.), outputs from medical monitoring devices 
(e.g., heartbeat, respiration, brain activity, etc.), outputs from 
other types of digital sensors, etc. 

Additionally or alternatively, user system(s) 130 may 
comprise or be communicatively connected to one or more 
internal system(s) 140B, and/or communicatively connected 
to one or more external system(s) 150. These internal 
systems 140B and/or external systems 150 may operate in a 
similar or identical manner as system(s) 140 and 150 
described above with respect to server(s) 110. For example, 
one or more user system(s) 130 may comprise or be inter 
faced with a temperature sensor, Global Positioning System 
(GPS) sensor, heartbeat monitor, etc. These integrated or 
interfaced systems may push or feed (e.g., periodically, in 
real time, etc.) information (e.g., metadata, data from which 
metadata may be derived, etc.) to such a user system 130, 
and/or return information (e.g., metadata, data from which 
metadata may be derived, etc.) to such a user system 130 in 
response to a request. In either case, the information may be 
provided to application 132, executing on user system 130, 



US 9,715,506 B2 
7 

and/or may be stored temporarily or persistently in local 
database 134 on user system 130. 

In an embodiment, user system 130 may generate meta 
data based on the received information from internal 
system(s) 140B and/or external system(s) 150, and/or pro 
vide the received information to server(s) 110 (e.g., to be 
used as or to generate metadata). Alternatively, server(s) 110 
may generate metadata based on the received information 
from internal system(s) 140A, external system(s) 150, and/ 
or user system(s) 130, and/or provide the received informa 
tion to user system 130 (e.g., to be used as or to generate 
metadata by application 132). 

It should be understood that each system 140A and 150 
may provide different information (e.g., from different 
Sources), which is aggregated at server(s) 110, and/or each 
system 140B and 150 may provide different information 
(e.g., from different sources), which is aggregated at user 
system 130. For example, one system 140A/140B or 150 
may provide weather data, whereas a different system 140A/ 
140B or 150 may provide an output from a medical moni 
toring device. Alternatively or additionally, two different 
systems 140A/140B or 150 may provide the same informa 
tion (e.g., two or more systems each provide a temperature, 
and, for example, the average is used to derive metadata) or 
different information of the same type (e.g., one system 
provides a temperature while a different system provides a 
humidity). It should also be understood that each system 
140A/140B or 150 may be operated by the same entity or 
different entities, and may be operated by the same entity as 
server(s) 110 and/or user system(s) 130 or a different entity 
than server(s) 110 and/or user system(s) 130. 

1.2. Metadata Platform 
FIG. 2 illustrates an example of the operation of a 

metadata platform with respect to third-party applications 
and platforms, according to an embodiment. Metadata plat 
form 200 aggregates, or facilitates aggregation of descrip 
tive metadata from a plurality of different metadata sources 
220. As used with respect to disclosed embodiments, 
descriptive metadata may comprise text, Uniform Resource 
Identifiers (URIs), hyperlinks, images, charts, video, elec 
tronic documents, work orders, and any other type of data 
which is capable of being associated with a content item. In 
addition, the descriptive metadata may comprise a mash-up 
or other derivation of data from multiple metadata sources 
220. As an example, metadata platform 200 may utilize 
location information from one metadata source 220 and a 
map image from a different metadata source 220 to derive 
metadata comprising a map image with an indication of the 
location, specified by the location information, within the 
map image. This plotted map image—which may represent 
a location at which a content item (e.g., photograph, video, 
or audio recording) was captured—may be associated with 
a content item as metadata. 

For example, each of internal system(s) 140A and/or 
external system(s) 150 may function as metadata sources 
220. Data may be received (e.g., either via a push or pull) 
from the system(s) 140 and/or 150, and descriptive metadata 
may be generated from the received data. The aggregated 
descriptive metadata may comprise the received data or be 
otherwise derived from the received data. For example, 
desired metadata may be extracted from the data received 
from source system(s) 140 and/or 150. 

In addition, one or more content items (e.g., from a user 
system 130 or other external system over network(s) 120) 
may be received, and at least a portion of the aggregated 
descriptive metadata may be “injected into the received 
content item(s). Injecting the metadata into a content item, 

10 

15 

25 

30 

35 

40 

45 

50 

55 

60 

65 

8 
as discussed herein, may comprise associating the metadata 
with the content item, for example, by adding the metadata 
to the content item (e.g., by embedding the metadata into 
one or more metadata fields within the content item) and/or 
adding the metadata to a sidecar file associated with the 
content item. 

In an embodiment, the metadata may be associated with 
the content item by creating a composite content item that 
comprises a composite of one or more original content items 
and metadata associated with those content item(s). The 
composition of the original content item(s) with metadata 
may be in addition to the injection of metadata into embed 
ded metadata fields within the composite content item or a 
sidecar file associated with the composite content item. For 
instance, a first Subset or type of metadata may be used to 
create the composite content item, while a second Subset or 
type of metadata (which may or may not overlap or be 
coextensive with the first subset or type of metadata) is 
added to embedded metadata fields or a sidecar file. As an 
example, if the metadata comprises an image (e.g., a map 
image with plotted location(s), as discussed elsewhere 
herein, another content item or captured image, etc.), the 
image may be combined with the original content item(s) to 
create a composite content item. For example, if the original 
content item is an image, the image from the metadata may 
be overlaid on a corner of the image of the original content 
item, or the image from the metadata and the image of the 
original content item may be arranged together in some 
other manner (e.g., side-by-side, top-and-bottom, etc.), to 
create a composite image as the composite content item. If 
the original content item is a video, the image from the 
metadata may be overlaid on or otherwise arranged with one 
or more frames of the video, to create a composite video as 
the composite content item. Additional metadata (e.g., an 
address of a location plotted in the image) may also be 
injected into an embedded field of the composite content 
item. In an embodiment, certain types of descriptive meta 
data (e.g., images, videos) that are not amenable to being 
input into embedded metadata fields (which are often only 
configured to accept text) may always be arranged with the 
original content item(s) to create a composite content item, 
whereas other types of descriptive metadata (e.g., text) that 
are amendable to being input into embedded metadata fields 
are embedded within those metadata fields. 

In an embodiment, the composite content item may com 
prise a plurality of content items composed together (e.g., in 
a mash-up, collage, etc.). As one example, the composite 
content item may comprise images of a plurality of related 
assets (e.g., inventory assets). It should be understood that, 
in addition to a plurality of content items, the composite 
content item may also comprise one or a plurality of visual 
depictions of metadata and/or be associated with metadata 
via embedded or side-car fields, as discussed above. 

In an embodiment, the composite content item may be 
defined by a template, which may comprise a selection of 
one or more content items and/or one or more visual 
depictions of metadata, and an arrangement of the selected 
content item(s) and/or visual depiction(s) of metadata. The 
arrangement may identify the position at which each of the 
selected content item(s) and/or visual depiction(s) of meta 
data are placed in the composite content item. A composite 
content item may then be generated based on the template, 
for example, by selecting content item(s) and/or visual 
depiction(s) of metadata identified in the template, and 
arranging the selected content item(s) and/or visual depic 
tion(s) of metadata identified in the template according to 
the arrangement identified in the template. 



US 9,715,506 B2 

FIG. 9 illustrates a composite metadata-injected content 
item 304, according to an embodiment. As illustrated, com 
posite metadata-injected content item 304 may comprise any 
number N (Zero, one, two, three, four, and so on) of 
component content items and any number M (Zero, one, two, 
three, four, and so on) of visual depictions of metadata. For 
example, the component content items could comprise any 
type of content item, including a digital image, a video, an 
electronic document, a third-party feed, etc. The component 
content item(s) may correspond one-to-one with original 
content item(s) 302, there may be multiple content items 
corresponding to a single original content item 302, and/or 
there may be no content item corresponding to a particular 
original content item 302. Similarly, the visual depiction(s) 
of metadata may include any type of visual element, Such as 
a map image, a third-party or external feed (e.g., streaming 
Video, a sensor feed), an asset identifier (e.g., asset number), 
an asset description (e.g., a text description of an asset), etc. 
The visual depiction(s) of metadata may correspond to one 
or more of original content item(s) 302. It should be under 
stood that composite metadata-injected content item 304 
may also comprise metadata that is not visually depicted 
(e.g., stored in embedded or otherwise associated fields of 
metadata-injected content item 304). 

It should be understood that aggregation of the metadata 
from source system(s) 140 and/or 150 may be performed 
independently of when content item(s) are received or 
generated and/or may be performed in response to receiving 
or generating a content item. As a non-limiting example, 
weather data may be received on a periodic or real-time 
basis, and injected as metadata into content items, as those 
content items are received or generated. Alternatively, 
weather data may be requested when a content item is 
received or generated, and injected into the content item as 
metadata once the weather data is received in response to 
that request. 

In an embodiment, after injecting metadata into a given 
content item, the content item with the injected metadata 
may be returned to the sender from which it was received 
(e.g., an originating application) and/or provided to an 
external or third-party system (e.g., over network(s) 120) for 
storage, publication, and/or the like. For example, after 
metadata is injected into a given content item, the metadata 
injected content item may be stored locally and/or remotely 
in an external storage system (e.g., in the cloud). 

1.2.1. Software Development Kit 
In an embodiment, metadata platform 200 provides a 

metadata software development kit (SDK) 210, which may 
be utilized by one or more third-parties to design third-party 
applications. However, it should be understood that the 
metadata SDK 210 may also be utilized by the operator of 
metadata platform 200 (as opposed to a third-party) to 
design an application for a user system 130. Thus, as used 
herein the term “third party' or “third-party' may refer to 
any entity. 

Metadata SDK 210 may comprise a set of software 
development tools that enables the creation of third-party 
applications. For example, a third-party developer may 
utilize metadata SDK 210, provided by platform 200, to 
design third-party application 250 (which may be the same 
as client application 132 in FIG. 1) for execution on user 
system(s) 130. Third-party application 250 may comprise 
module(s) and/or user interface(s) for capturing content 
items (e.g., by interfacing with a camera that captures an 
image or video) or otherwise generating content items. 

In an embodiment, metadata SDK 210 may comprise one 
or more application programming interfaces (APIs) for 

5 

10 

15 

25 

30 

35 

40 

45 

50 

55 

60 

65 

10 
interfacing with metadata sources 220. One or more APIs, 
provided by metadata SDK 210, may comprise a library 
(e.g., a specification for routines, data structures, object 
classes, variables, etc.). Alternatively or additionally, one or 
more APIs, provided by metadata SDK 210, may comprise 
a specification of remote calls to metadata sources 220 that 
may be utilized by a third-party application. For example, a 
third-party developer may incorporate calls (e.g., local or 
remote procedure calls) to metadata sources 220, in accor 
dance with the specification in the API, into third-party 
application 250 which can be executed on a user system 130. 
In an embodiment, metadata SDK 210 may also comprise 
one or more APIs or libraries for interfacing with metadata 
server(s) 110. 

In an embodiment, metadata SDK 210 may comprise one 
or more APIs for retrieving or otherwise receiving metadata 
from each of a plurality of potential metadata sources 220. 
Potential metadata source(s) 220 may include GPS, one or 
more calendar services (e.g., that provide real-time, near 
real-time, and/or historical calendar data), one or more 
weather services (e.g., that provide real-time, near-real-time 
and/or historical weather data), one or more news services 
(e.g., that provide real-time, near-real-time, and/or historical 
news), one or more appointment applications (e.g., one or 
more third-party applications that keep track of appoint 
ments for registered users), one or more contact applications 
(e.g., one or more third-party applications that keep track of 
contacts for registered users), an object-recognition service 
or application (e.g., facial recognition, recognition of land 
marks, products, pets, or other objects, etc.), a speech-to-text 
service or application (e.g., which generates closed-captions 
for content items comprising audio), one or more other 
services and/or applications (e.g., other third-party applica 
tions from which metadata may be derived), registration 
information (e.g., which returns authorship information 
based on data stored for a registered user), etc. A third-party 
developer may select any Subset of one or more of metadata 
Sources 220 to be used for metadata injection, according to 
its particular needs. 

In addition, third-party developers may create custom 
sources using metadata SDK 210. For example, third-party 
developers may utilize metadata SDK 210 to generate 
custom modules (e.g., using a class specification or libraries 
in metadata SDK 210) for retrieving metadata from sources 
(e.g., other applications, services, etc.) that are not particu 
larly provided for by metadata SDK 210. 

It should be understood that the preceding list of potential 
Sources is merely illustrative, and that metadata sources 220 
may include more, fewer, and/or different sources than those 
described herein. In an embodiment, metadata sources 220 
include the metadata sources described with respect to FIG. 
3. Furthermore, the potential metadata sources 220 may be 
local to a user system 130 on which third-party application 
250 is executing (e.g., another client application, Such as a 
calendar or address book application, a GPS sensor, etc.), 
remote to the user system 130 on which third-party appli 
cation 250 is executing (e.g., a weather service provided 
over network(s) 120), or a mixture of both local and remote 
SOUCS. 

1.2.2. Metadata Server 
In an embodiment, metadata server(s) 110 may comprise 

or be interfaced with one or more potential storage destina 
tions 230. Potential storage destination(s) 230 may include 
one or more remote storage destinations and/or one or more 
local storage destinations. One or more of these storage 
destinations may include a cloud storage destination (e.g., 
Amazon S3TM). It should be understood that the list of 



US 9,715,506 B2 
11 

potential storage destinations is merely illustrative, and that 
potential storage destinations 230 may include more, fewer, 
and/or different destinations than those described herein. 

Metadata server(s) 110 may also be communicatively 
connected with one or more third-party platforms 240. Each 
third-party platform 240 may support (e.g., via communi 
cation, for example, over one or more networks such as 
network(s) 120) a respective third-party application 250. 
Each third-party application 250 may be a client application 
(e.g., application 132 executing on a user system 130), 
which communicates with a server of its respective third 
party platform 240 (e.g., over network(s) 120), for example, 
for user registration and authentication, server-side process 
ing, data storage, etc. It should be understood that, while 
only a few third-party applications 250 and a few third-party 
platforms 240 are illustrated, there may be any number of 
third-party application(s) 250 and third-party platform(s) 
240, and each third-party platform 240 may support a 
plurality of third-party applications 250 executing on a 
plurality of user systems 130. 

1.2.3. Metadata-Injection Module 
FIG. 3 illustrates a metadata-injection module 300, 

according to an embodiment. Metadata-injection module 
300 may be implemented by a third party using metadata 
SDK 210. In this case, metadata-injection module 300 may 
be incorporated into third-party application 250. Alterna 
tively, metadata-injection module 300 may be provided by 
metadata SDK 210 (e.g., as a pre-written library) and called 
by third-party application 250 as a routine specified in an 
API of metadata SDK 210. In this case, third-party appli 
cation may pass the content item, to be injected with 
metadata, possibly with parameter(s), to metadata-injection 
module 300. Metadata-injection module 300 may execute on 
the same device (e.g., user system 130) as third-party 
application 250, or may execute on a device that is remote 
(e.g., over one or more networks, such as network(s) 120) 
from third-party application 250, such as metadata server 
110 or third-party platform 240, in which case third-party 
application 250 may communicate with metadata-injection 
module 300 over one or more networks (e.g., network(s) 
120) using standard communication protocols. 

Metadata-injection module 300 comprises or is interfaced 
with one or more metadata sources, illustrated in FIG. 3 as 
sources 310,315, 320, 325, 330, 335, 340, 345, 350, 355, 
360, 365, 370, 375, and 380, which may correspond to 
metadata sources 220 in FIG. 2. However, it should be 
understood that these sources are merely illustrative, and 
that metadata-injection module 300 may comprise or be 
interfaced with fewer, more, or different sources than those 
shown. One or more of the sources may be local to metadata 
server 110 (e.g., on the same device as metadata-injection 
module 300, such as user system 130 or metadata server 
110), or remote from metadata-injection module 300 (e.g., 
on a different device than metadata-injection module 300, 
for example, separated by network(s) 120 and/or a wireless 
network), in which case metadata-injection module 300 may 
communicate with those remote sources over one or more 
networks (e.g., network(s) 120) using standard communica 
tion protocols. 

Each one of the metadata sources used by metadata 
injection module 300 may be selected in advance by the 
particular third-party developer implementing or using 
metadata-injection module 300. For example, a given third 
party developer may have a need for Some metadata sources, 
but not others. In this case, the third-party developer may 
implement metadata-injection module 300 to utilize only the 
needed metadata sources, and not the unnecessary metadata 

5 

10 

15 

25 

30 

35 

40 

45 

50 

55 

60 

65 

12 
sources, for example, by only utilizing the APIs and/or 
libraries of metadata SDK 210 related to the needed meta 
data sources. In addition, metadata SDK 210 may provide 
tools for a third-party developer to create its own custom 
metadata source. This extensibility allows a third-party 
developer to use any combination of the metadata sources 
provided by metadata SDK 210, its own metadata sources, 
and/or additional external metadata Sources. 

In an embodiment, third-party developers may pay for 
usage of the metadata sources (e.g., metadata sources 220, 
310-390). In such an embodiment, metadata server 110 may 
comprise a web service which provides access to the meta 
data sources via one or more APIs. Third-party developers 
may register with metadata server 110 in advance. An 
accounting module may monitor which metadata source(s) 
each third-party developer uses via metadata server 110, and 
bill those third-party developers accordingly. In an embodi 
ment, metadata server 110 may require authentication 
between third-party application 250 and metadata server 110 
prior to utilization of the metadata sources accessible via 
metadata server 110. In this case, metadata server 110 may 
maintain a profile, for each third-party developer and/or 
third-party application 250, which identifies the metadata 
Source(s) that that developer and/or application is authorized 
to use, and restrict each third-party applications use of 
metadata sources to those metadata source(s) identified in its 
respective profile or the profile of its developer. 

Metadata-injection module 300 receives a content item 
302 (e.g., from or through third-party application 250), 
consults at least a Subset of the metadata sources to generate 
metadata, injects or otherwise associates the generated meta 
data with content item 302, and outputs metadata-injected 
content item 304 which corresponds to content item 302 
with newly-associated metadata. Metadata-injection module 
300 may receive at least some content item(s) 302, in real 
time or near-real time, as they are created (e.g., immediately 
after a photograph has been captured or a video recorded, for 
example, by third-party application 250). Thus, for example, 
metadata may be injected by metadata-injection module 
300, in the background (e.g., automatically or semi-auto 
matically), into content item(s) 302 before the content 
item(s) 302 are stored to persistent memory. Alternatively or 
additionally, metadata-injection module 300 may receive at 
least some content item(s) 302 at a time well after they were 
created, thereby allowing a user to inject metadata into old 
or historic content items. 

In an embodiment, metadata-injection module 300 deter 
mines which of the metadata sources to retrieve metadata 
from based, at least in part, on the type of content item 302 
(e.g., photograph, video, etc.). This content item type may be 
specified in the request comprising content item 302 and 
received by metadata-injection module 300, or may be 
determined by metadata-injection module 300 through 
analysis of content item 302. Metadata-injection module 300 
may send a request, comprising an indication of the content 
item type, to each metadata source, and receive a response, 
comprising an indication of whether that metadata source 
Supports that content item type, from the metadata source. 
Alternatively or additionally, metadata-injection module 
300 may store associations between each metadata source 
and the content item type(s) that it supports. In this case, 
these associations may be updated (e.g., automatically, peri 
odically, manually, etc.) by sending a request to each meta 
data Source to be updated, and receiving a response com 
prising the content item type(s) that the metadata source 
supports. When metadata-injection module 300 receives a 
content item 302, metadata-injection module 300 may query 



US 9,715,506 B2 
13 

the stored associations between content types and metadata 
Sources, using the content item type, to identify all of the 
metadata source(s) that Support the content item type. In any 
case, metadata-injection module 300 may only retrieve 
metadata from the metadata sources which Support the type 
of content item 302. 

In an embodiment, metadata-injection module 300 may 
consult Some metadata sources 220 to retrieve metadata 
based on a time (e.g., represented as a timestamp) associated 
with content item 302. For example, this time may represent 
a time that content item 302 was received or created, or may 
be an arbitrary time that is associated with content item 302 
(e.g., by a user or device). The time may be sent or passed 
to one or more of metadata sources 220 as a parameter, and 
may be used by the one or more metadata sources 220 to 
retrieve time-based metadata. It should be understood that 
where the time represents a time that content item 302 was 
created, a timestamp in the technical metadata of content 
item 302 may be used. In this case, metadata-injection 
module 300 does not need to receive content item 302 at or 
near the time of its creation, but may instead receive an old 
content item that may have been created long ago (e.g., 
either by the same device, or after being transferred from 
another device) and process the old content item in the same 
manner as it would a newly-created content item. Thus, the 
modules and processes described herein may apply to con 
tent items regardless of when and where they were gener 
ated. 

Metadata-injection module 300 may be described herein 
as receiving metadata from the various metadata sources 
(e.g., metadata sources 220 and 310-390). However, it 
should be understood that the receipt of metadata by meta 
data-injection module 300 or return of metadata to metadata 
injection module 300 by a metadata source may also refer to 
an instance in which information (which the metadata source 
may not necessarily intend to be used as metadata) is 
received by metadata-injection module 300 from a metadata 
source, and metadata-injection module 300 then derives 
metadata from that received information. For example, 
metadata-injection module 300 may derive metadata from 
information received from a metadata source by extracting 
character strings from the non-metadata information to be 
used as metadata, and then inject that metadata into content 
item 302 to produce metadata-injected content item 304. 
Injection may comprise inputting the metadata into embed 
ded metadata fields of content item 302, inputted the meta 
data into a sidecar file associated with content item 302, 
generating a composite content item comprising both the 
original content item 302 and a visual depiction (e.g., image) 
of metadata, and/or otherwise associated the metadata with 
content item 302. 

Each of the various potential metadata sources 310-390 
will now be described in more detail. For each of metadata 
sources 310-390, metadata-injection module 300 may 
retrieve the information (e.g., metadata) automatically (e.g., 
without user input), semi-automatically (e.g., after user 
confirmation, for example, in response to a prompt of a user 
interface), or manually (e.g., in response to a specific user 
input or request). It should be understood that metadata 
sources 310-390 merely represent some examples of meta 
data sources, and metadata-injection module 300 may 
retrieve metadata from fewer, more, or different metadata 
Sources, including custom metadata sources that are imple 
mented by a third-party developer (e.g., specifically for a 
particular third-party application 250). 

10 

15 

25 

30 

35 

40 

45 

50 

55 

60 

65 

14 
1.2.3.1. Audio-to-Text Module 
In an embodiment, metadata-injection module 300 

retrieves text information from an audio-to-text module 310. 
In cases in which content item 302 comprises audio data, 
this audio data may be sent from metadata-injection module 
300 to audio-to-text module 310. For instance, the audio 
data may be extracted from content item 302, and the 
extracted audio data may be sent by metadata-injection 
module 300 to audio-to-text module 310. Alternatively, the 
entire content item 302 may be sent from metadata-injection 
module 300 to audio-to-text module 310, and audio-to-text 
module 310 may extract the audio data from content item 
302. It should be understood that extraction or separation of 
the audio data from content item 302 may not be necessary, 
for example, if content item 302 consists only of the audio 
data (e.g., content item 302 is an audio recording). 
The audio data may represent audio recorded by a micro 

phone (e.g., integrated into a user system 130. Such as a 
Smartphone or camera, which may function as a capture 
device) during the capture of a content item, such as a video 
or audio recording. In this case, the audio data may reflect 
speech or ambient noise from one or more people or objects 
within or near a scene being captured. Alternatively or 
additionally, the audio data may represent audio recorded by 
such a microphone before or after capture of the content 
item. In this case, the audio data may represent audio 
recorded by someone (e.g., the person that captured or is 
about to capture the content item, or a person who possesses 
the content item), specifically to be used as metadata (e.g., 
a narration or other description of the content item), and this 
audio data may be attached to or otherwise associated with 
content item 302. 

In any case, audio-to-text module 310 may convert the 
audio data from content item 302 into text, using well 
known methods of speech-to-text conversion. In the case 
that the audio data is captured during capture of content item 
302, the output text may reflect subtitles (e.g., closed cap 
tions) for content item 302. These subtitles may be associ 
ated with content item 302 (e.g., timed to the audio data in 
content item 302) by audio-to-text module 310 or metadata 
injection module 300, such that they can be used as closed 
captions during playback of content item 302 (e.g., by a 
media player that Supports closed captions). For example, if 
content item 302 comprises a video of two people having a 
conversation, the audio channel from the video may be 
extracted by metadata-injection module 300 and passed to 
audio-to-text module 310. Audio-to-text module 310 may 
convert the audio channel, representing the conversation, 
into text, and pass that text back to metadata-injection 
module 300, which may embed it into the metadata of 
content item 302. 

In an embodiment, audio-to-text module 310 may be 
language agnostic (e.g., comprise libraries for all languages 
or a smaller Subset of languages). Such that it is able to 
translate audio in any language into text. In Such an embodi 
ment, the audio may be always be translated into text of the 
same language. Alternatively, the audio may be always 
translated into text of a normalized language (e.g., English). 
This may be a design choice available to each third-party 
developer. 

In the case that the audio data is captured before or after 
capture of content item 302 (e.g., as voice notes received via 
microphone from a creator or possessor of content item 
302), the output text may reflect notes, comments, narra 
tives, descriptions, and the like, regarding the content of 
content item 302. This type of audio data may be captured 
via one or more user interfaces provided by third-party 



US 9,715,506 B2 
15 

application 250 and/or metadata-injection module 300. Such 
user interfaces may prompt a user to generate audio meta 
data by speaking into a microphone (e.g., of user system 
130). Alternatively or additionally, the user may be 
prompted to generate audio metadata by speaking into the 
microphone even during capture of content item 302. 

Audio-to-text module 310 may return the text output from 
its audio-to-text process to metadata-injection module 300. 
In an embodiment, metadata-injection module 300 parses 
the text output received from audio-to-text module 310 to 
extract or otherwise derive appropriate metadata for content 
item 302. For example, audio-to-text module 310 may 
extract one or more character strings from the received text 
output based on one or more criteria. These criteria may 
include, without limitation, proper names (e.g., names of 
people or places), frequently appearing words (e.g., a certain 
number of significant words that appear the most fre 
quently), peculiar words (e.g., relatively uncommon words), 
words that are relevant to particular metatags for a standard 
file format (e.g., words, matching, preceding, and/or follow 
ing the name of a predefined metatag), etc. Alternatively, 
metadata-injection module 300 may use the entire text 
output as metadata. 

In an embodiment, metadata-injection module 300 may 
parse the text output to identify a command that causes 
certain metadata (e.g., previously-generated metadata or 
obtainable metadata), indicated by the command, to be 
associated with content item 302. For example, if metadata 
injection module 300 identifies the command “GPS. meta 
data-injection module 300 may retrieve GPS coordinates 
from location module 335 and associate the GPS coordinates 
or geolocation information based on the GPS coordinates 
with content item 302. As another example, if metadata 
injection module 300 identifies the command “recognize 
faces.” metadata-injection module 300 may activate object 
recognition module 320 to automatically detect and identify 
metadata for faces that appear in content item 302, and 
associate the identified metadata (e.g., first and last name) 
with content item 302. In a similar manner, such voice 
commands may be provided for each of the metadata 
sources and modules described herein (e.g., “author' for 
authorship module 315, “user interface' for user interface 
325, “time for time module 330, “location or “GPS for 
location module 335, “weather' for weather module 345, 
“news for news module 350, identifiers of various sensor(s) 
for sensor(s) 355, “closed captions” for closed-captions 
module 360, “AIDC for AIDC module 365, “contacts' for 
contacts module 370, “asset' for asset module 375, etc), and 
when detected may cause metadata-injection module to 
retrieve metadata from the corresponding metadata source. 

1.2.3.2. Authorship Module 
In an embodiment, metadata-injection module 300 

retrieves authorship information from an authorship module 
315. Authorship information may include, without limita 
tion, the first name and/or last name of an author, a username 
or other identifier of the author, contact information for an 
author (e.g., phone number, email address, mailing address, 
etc.), an image of the author (e.g., photograph, avatar, etc.). 
a title of the author, and/or any other information related to 
the author of content item 302 (e.g., from employee records, 
patient records, etc.). 

Authorship module 315 may acquire the authorship infor 
mation (e.g., an author's first name and/or last name and/or 
other identifier(s) of the author) from autobiographical infor 
mation in a user's account or profile. The autobiographical 
information from a user's account may be accessible to 
authorship module 315 via one or more APIs for an account 

5 

10 

15 

25 

30 

35 

40 

45 

50 

55 

60 

65 

16 
module that executes on the user device (e.g., user system 
130) on which third-party application 250 is executing. The 
account module may be accessible to authorship module 315 
once a user registers or “logs in to the user device or 
third-party application 250. For example, when a user 
authenticates with the user device or third-party application 
250—for example, using a username and password, or 
biometrics (e.g., fingerprint(s) recognition, facial recogni 
tion, iris recognition, Voice recognition, etc.)—authorship 
module 315 may be provided with access to account infor 
mation associated with the authenticated user (e.g., associ 
ated with the username, biometrics, etc.). In an embodiment 
which utilizes biometrics, the biometrics may be obtained 
from a biometric sensor (e.g., camera, dedicated fingerprint 
scanner, dedicated iris Scanner, microphone, etc.) that is 
integral to or interfaced with the user device. It should be 
understood that a user device may have accounts for a 
plurality of users, and thus, authorship module 315 may 
return different authorship information depending on which 
user is logged in at the time that each content item 302 is 
received or generated. As long as a user's authenticated 
session is active, authorship module 315 may acquire infor 
mation from the user's account as needed to be used for 
metadata. Alternatively, authentication may not be required 
to obtain authorship information (e.g., depending on a user 
setting). For example, the authorship information of a user 
account may be freely accessible to authorship module 315 
with or without a prior authentication. 

In an embodiment, biometrics may be obtained contem 
poraneously with content item 302. For example, biometrics 
may be obtained by a user pressing his finger to a fingerprint 
scanner during acquisition of content item 302 or contem 
poraneously with acquisition of content item 302 (e.g., 
within a predefined time of acquisition of content item 302, 
via user interfaces preceding or following an acquisition 
user interface in a wizard provided by third-party application 
250, etc.). Third-party application 250, metadata-injection 
module 300, authorship module 315, or another module may 
infer from this action that the user intends to inject author 
ship information into content item 302. Thus, authorship 
module 315 may receive the biometrics, retrieve authorship 
information associated with the biometrics, and provide the 
authorship information to metadata-injection module 300 
for injection into content item 302. 
As an example, a user could initially register his or her 

authorship information with third-party application 250, 
metadata-injection module 300, authorship module 315, 
user system 130, etc. in a user account or profile associated 
with that application, module, or system. For embodiments 
which utilize authentication and/or biometrics, this author 
ship information or user account may be associated with 
authentication credentials and/or biometrics, respectively. 
As part of the registration process, a user may be provided 
with one or more user interfaces for specifying one or more 
fields to be used as authorship information. Subsequently, 
this authorship information may be accessed by authorship 
module 315 to generate metadata (e.g., in response to a 
request or procedure call from metadata-injection module 
300) for content items (e.g., generated by third-party appli 
cation 250). In an embodiment, the generation of metadata 
may be performed by authorship module 315 by extracting 
the metadata from the authorship information or from using 
the authorship information as the metadata. 

1.2.3.3. Object Recognition Module 
In an embodiment, metadata-injection module 300 

retrieves object information from an object-recognition 
module 320. As an example, a user may specify one or more 



US 9,715,506 B2 
17 

objects in content item 302, for example, by drawing a 
polygon around each object (e.g., using a touch operation or 
input device). Alternatively or additionally, metadata-injec 
tion module 300 may send or pass content item 302 to 
object-recognition module 320 which may automatically 
detect one or more objects in content item 302 (e.g., using 
well-known methods of edge detection), or metadata-injec 
tion module 300 may detect the object(s) in content item 302 
and send or pass those objects (e.g., cropped images or audio 
segments from content item 302 representing the objects) to 
object-recognition module 320 for identification. 

In any case, object-recognition module identifies one or 
more objects in content item 302. These objects may rep 
resent faces, people, animals (e.g., pets), landmarks (e.g., 
buildings, monuments, geographical features), products 
(e.g., consumer products), assets (e.g., inventory or infra 
structure components), or any other type of recognizable 
object. In a content item 302 that comprises an image (e.g., 
photograph) or image frames (e.g., video), objects may be 
represented by portions of the image containing visual 
depictions of the object. Additionally, in a content item 302 
that comprises audio, objects may be represented by an 
audio segment containing a Sound generated by the object or 
otherwise related to the object. For example, an object that 
is a vehicle could be represented by a visual depiction of the 
vehicle in content item 302 and/or an audio segment repre 
senting the sound of a car horn or engine in content item 302. 

Object-recognition module 320 may comprise or be inter 
faced with a reference database 392, which is utilized to 
identify the object(s) in content item 302. Reference data 
base 392 comprises a plurality of representations of refer 
ence objects. Each representation of a reference object may 
model the reference object. As an example, each represen 
tation in reference database 392 may comprise a vector of 
feature descriptors, each of which quantify a particular 
feature of the reference object. In an embodiment, object 
recognition module 320 converts each detected object from 
content item 302 into a representation that is similar or 
identical in structure to the representations stored in refer 
ence database 392. For example, if each representation in 
reference database 392 comprises a vector of feature 
descriptors, object-recognition module 320 may convert 
each detected object from content item 302 into a vector of 
the same feature descriptors (i.e., quantifying the same 
features of the detected object as for each reference object). 

Object-recognition module 320 compares the representa 
tion (e.g., feature vector) of each detected object from 
content item 302 to one or more representations (e.g., feature 
vectors) of reference objects in reference database 392, and 
attempts to select a reference object based on one or more 
criteria. For example, in the case that feature vectors are 
used to model the detected and reference objects, each 
comparison may comprise calculating a distance between 
the feature vector of a detected object and one or more 
reference objects. Object-recognition module 320 may 
select at least one of the reference objects based on these 
distances and/or one or more other criteria (e.g., a thresh 
old). For example, object-recognition module 320 may 
select the reference object with the shortest distance, one or 
more reference objects with a distance below a predefined 
threshold, or the reference object with the shortest distance 
below a predefined threshold. However, it should be under 
stood that Such techniques are a Subset of more general 
pattern-matching techniques, and that object-recognition 
module 320 may implement other techniques which param 
eterize or quantify features of objects and/or relationships 
between features of objects. Regardless of the particular 

10 

15 

25 

30 

35 

40 

45 

50 

55 

60 

65 

18 
criteria used to select a reference object, the selected refer 
ence object represents an identification of the detected object 
from content item 302. On the other hand, if no reference 
object meets the criteria, then the detected object from 
content item 302 may remain unidentified. 

In an embodiment, a location (e.g., from location module 
335) may be used to restrict comparison to portion(s) of 
reference database 392. For example, metadata-injection 
module 300 may receive a location (e.g., GPS coordinates) 
from location module 335, and send or pass this location to 
object-recognition module 320. Reference database 392 may 
comprise similar or identical location information (e.g., GPS 
coordinates) for one or more of the stored reference objects. 
Thus, object-recognition module 320, when comparing a 
detected object from content item 302 to a reference object 
in reference database 392, may compare the location 
received from metadata-injection module to the location 
stored for the reference object. It should be understood that 
the received location may match the location stored for the 
reference object if the locations are identical and/or if the 
locations are within a predefined distance or radius from 
each other. Alternatively, reference database 392 may be 
indexed and/or sorted according to location, and object 
recognition module 320 may restrict comparisons to only a 
portion of reference database 392 with matching locations 
(e.g., identical or within a predefined distance or radius). For 
example, if a user captures a photograph of Big Ben using 
his or her smartphone, the GPS coordinates of the Smart 
phone at the time of capture may be obtained by metadata 
injection module 300 from location module 335 and passed 
to object-recognition module 320 to restrict searching to a 
subset of reference objects within the vicinity (e.g., a pre 
defined radius) of the GPS coordinates, such that Big Ben 
may be recognized in the photograph more quickly and 
efficiently than if the entire reference database 392 had to be 
searched. 

Searching of reference database 392 may be restricted in 
other manners as well. For example, metadata-injection 
module 300 may receive one or more locations (e.g., GPS 
coordinate(s) or address(es)) of a user's contacts from 
contacts application 370, and compare these to a current 
location of the user's device (e.g., GPS coordinates or an 
address received from location module 335) to generate a 
list of locations or contacts within a vicinity (e.g., predefined 
radius) of the current location of the user's device. Meta 
data-injection module 300 may send or pass a list of loca 
tions within the vicinity of the current location of the user's 
device to object-recognition module 320. Object-recogni 
tion module 320 may receive this list of locations and restrict 
object recognition to comparisons of detected objects from 
content item 302 to only those references objects in refer 
ence database 392 which are within a vicinity (e.g., pre 
defined radius) of at least one location in the received list of 
locations. Alternatively or additionally, metadata-injection 
module 300 may send or pass a list of contacts within the 
vicinity of the current location of the user's device to 
object-recognition module 320. Object-recognition module 
320 may receive this list of contacts and restrict facial 
recognition to comparisons of detected faces from content 
item 302 to only those reference objects in reference data 
base 392 which are associated with a contact in the received 
list of contacts (e.g., which represent faces of contacts in the 
list of contacts). 

It should be understood that facial recognition is a subset 
of the above-described object recognition, and can be per 
formed in the same or similar manner as other types of 
objects. For instance, the representation of a facial object 



US 9,715,506 B2 
19 

may comprise a vector of features representing facial char 
acteristics, such as the vertical width of the forehead, 
vertical length of the nose, horizontal width of the lips, 
vertical distance between the lips and mouth, quantified 
relationships between different portions of the face (e.g., 
center of the eyes, eyebrows, ears, nose, etc.), and/or the 
like. 

In addition, it should be understood that audio recognition 
is also a subset of the above-described object recognition. 
For example, audio segments may be parameterized or 
quantified (e.g., into a feature vector) in the same manner as 
object images, and compared to representations of reference 
audio objects, in a similar or identical manner, to identify a 
reference audio object that matches a detected audio seg 
ment from content item 302. In this case, the audio segment 
may represent a person's voice, in which case the compari 
son between the detected audio segment from content item 
302 and reference audio objects in reference database 392 
may utilize conventional Voice-recognition techniques. 
Alternatively, the detected audio segment may represent a 
specific Sound (e.g., a bark, car horn, bell, traffic noise, Song, 
Big Ben's chimes, mullah calls to prayer, etc.) that is 
identical to one of the reference audio objects in reference 
database 392, in which case object-recognition module 320 
may utilize conventional Sound-matching techniques. 
When object-recognition module 320 matches a detected 

object from content item 302 to a reference object in 
reference database 392, object-recognition module 320 may 
retrieve object information associated with that matching 
reference object. This object information may also be stored 
in reference database 392 (e.g., with or associated with the 
representation of that reference object), or another database 
(e.g., with records linked to object models stored in refer 
ence database 392). The retrieved object information may be 
returned to metadata-injection module 300, which may use 
the object information as metadata or to generate metadata, 
and inject the metadata into content item 302. It should be 
understood that object information may be returned for each 
detected and matched object in content item 302. As non 
limiting examples, visual identification (i.e., a Successful 
match) of a face in content item 302 may result in the name 
of a person (i.e., associated with the reference object rep 
resenting that face in reference database 392) being returned 
to metadata-injection module 300, visual identification of a 
pet dog may result in the name of the pet dog being returned, 
an audio identification of Big Ben's chimes may result in 
“Big Ben' being returned, a visual identification of Big Ben 
may also result in “Big Ben' being returned, etc. More 
generally, the object information may comprise any infor 
mation related to the object and may potentially include 
links (e.g., a URL) to additional information, but will 
typically comprise an identification and/or description of the 
object. 

In an embodiment, when an object is identified (i.e., 
matched) in content item 302, metadata-injection module 
300, object-recognition module 320, user interface 325, or 
third-party application 250 may prompt the user to confirm 
that the object was properly identified. For example, if an 
object in a content item (e.g., photograph) captured by a user 
is recognized as “Mt. Rushmore, the module may provide 
the user with a user interface comprising at least the portion 
of the content item recognized as Mt. Rushmore, a prompt 
of "Is this Mt. Rushmore?” (or similar prompt), and one or 
more inputs for either confirming that the object is Mt. 
Rushmore or indicating that the object is not Mt. Rushmore. 
If the user confirms that the object was properly recognized, 

10 

15 

25 

30 

35 

40 

45 

50 

55 

60 

65 

20 
the module may then generate appropriate metadata (e.g., 
the name of the object) to be associated with content item 
3O2. 

In an embodiment, reference database 392 may be cre 
ated, at least in part, from previously-created content items 
that are either Supplied by an operator of metadata platform 
200, a third party (e.g., an operator of third-party platform 
240), and/or a user of third-party application 250. For 
instance, a user may manually tag or otherwise indicate an 
object in a previously-captured content item (e.g., photo 
graph or video), and associate the object with object infor 
mation, such as an identifier or description of the object. As 
an example, a user may utilize a user interface (e.g., pro 
vided by third-party application 250) to draw a rectangle 
around an object (e.g., a face of a Subject) in the previously 
captured content item, and associate the tagged face with a 
name of the subject and/or other information. Object-rec 
ognition module 320 or another module may then generate 
a representation of the object (e.g., a graph, feature vector, 
or other model representing the features and relationships 
between features of the object), and store the “learned 
representation of the object as a reference object in reference 
database 392 in association with specified object informa 
tion (e.g., a name of the person if the object is a face). As 
mentioned above, at least Some of these objects (e.g., 
landmarks, people, pets, etc.) may also be associated with 
location information (e.g., GPS coordinates, address, city, 
state, etc.). For example, a reference object representing Big 
Ben could be associated with GPS coordinates for Big Ben 
or with "London, England.” This location information may 
facilitate searching when location information is available 
(e.g., from location module 335). Conversely, this location 
information may be used to generate location-based meta 
data when a reference object is matched to a detected object 
from content item 302 (e.g., to add “London, England' to 
metadata if Big Ben is matched). For example, object 
recognition module 320 may return this location information 
to metadata-injection module 300 in the object information. 
If this location information comprises GPS coordinates or 
other raw data, metadata-injection module 300 may send or 
pass the location information to location module 335 or 
another module to be converted into more user-friendly 
metadata (e.g., converting GPS coordinates of Big Ben into 
“London, England'). 

Reference database 392 may be a local database (e.g., 
stored on user system 130) or remote database (e.g., stored 
on metadata server 110 or elsewhere over network(s) 120). 
Since the amount of information to be stored for a simple 
facial-recognition database of known Subjects is relatively 
small, such a database could be stored locally. On the other 
hand, if reference database 392 included information for a 
large number of subjects (e.g., larger than the user's universe 
of known Subjects) or also included information for numer 
ous other objects (e.g., landmarks, products, etc.) reference 
database 302 would likely need to be stored remotely (e.g., 
on or interfaced with metadata server 110) and accessed 
(e.g., queried) over a network (e.g., network(s) 120). How 
ever, in this case, it should be understood that portions of the 
remote database corresponding to a certain geographical 
location of the user device (e.g., landmarks within a pre 
defined radius of a current location of user system 130) may 
be downloaded to a user device as a temporary local 
database for quicker access. The structure of reference 
database 392 can be in the form of a lookup table (e.g., a 
relational database), or any other Suitable format. 



US 9,715,506 B2 
21 

1.2.3.4. User Interface 
In an embodiment, metadata-injection module 300 

retrieves manually-input information from a user interface 
325. Third-party application 250 or metadata-injection mod 
ule 300 may provide one or more user interface(s) 325 which 5 
receive user input 393. For example, user interface 325 may 
comprise input fields for entering metadata or information 
from which metadata may be derived. In an embodiment, 
user interface 325 may comprise input fields dedicated to 
receiving metadata from the user. In this case, the informa- 10 
tion input into the input fields is provided as metadata to 
metadata-injection module 300 for injection into content 
item 302. Otherwise, metadata-injection module 300 may 
utilize the information to derive metadata to be injected into 
content item 302. 15 

In an embodiment, user interface 325 may receive audio 
input from a user, in addition to or instead of text input. For 
example, user system 130 may comprise an integrated or 
otherwise connected microphone, and the user may interact 
with user interface 325 to record audio by, for example, 20 
selecting an input which initiates recording of audio through 
the microphone. In this case, user interface 325 may return 
the audio data to metadata-injection module 300, which may 
send or pass the audio data to audio-to-text module 310 to 
be converted into text. Metadata-injection module 300 may 25 
then generate metadata, from the text received from audio 
to-text module 310, and inject the metadata into content item 
3O2. 

1.2.3.5. Time Module 
In an embodiment, metadata-injection module 300 30 

retrieves temporal information from a time module 330. In 
an embodiment, time module may comprise or communicate 
with a system clock of the user device, and may return time 
information (e.g., a timestamp), representing the current 
time, to metadata-injection module 300. 35 

1.2.3.6. Location Module 
In an embodiment, metadata-injection module 300 

retrieves location information from a location module 335. 
Location module 335 may comprise a GPS receiver. The 
GPS receiver may be integral to the device (e.g., Smart- 40 
phone) on which metadata-injection module 300 is execut 
ing, and may derive current GPS coordinates (e.g., latitude, 
longitude, and elevation) representing the current location of 
the device. Location module 335 may utilize the GPS 
coordinates or received GPS coordinates (e.g., GPS coordi- 45 
nates received from metadata-injection module 300 that are 
associated with a previously-generated content item), to 
determine higher-level geolocation information, such as an 
address (e.g., Street, city, state, and/or Zip code), to be 
returned to metadata-injection module 300 for use as or in 50 
metadata. For example, location module 335 may query a 
local or remote database using the GPS coordinates to 
retrieve an address associated with the GPS coordinates. 
The location information received from location module 

335 may comprise a location (e.g., GPS coordinates, 55 
address, etc.) of the device at the time that content item 302 
was captured (if the content item was captured by the 
device) and/or a geolocation represented in content item 302 
(which may be the same as the current geolocation of the 
device if the device recently captured the content item, or 60 
which may be different than the geolocation of the device if 
the content item was captured by a different device and 
transferred to the current device or was captured by the 
current device at an earlier time). In addition, the location 
information may comprise a visual representation of a 65 
location, Such as the location plotted on a map image. Thus, 
in this case, the metadata injected by metadata-injection 

22 
module 300 may be a map image with the plotted location, 
and location module 335 may comprise or be interfaced with 
a map service, from which it retrieves the map images. 
As an example, as a user utilizes his or her Smartphone to 

capture photographs while in Washington, D.C., metadata 
injection module 300 may receive each photograph as a 
content item 302, acquire the current geolocation of the 
smartphone from location module 335, and associate the 
acquired geolocation with each photograph. The geolocation 
may comprise GPS coordinates, or metadata-injection mod 
ule 300 or location module 335 may convert the GPS 
coordinates into higher-level information, Such as an 
address, city, state, etc. For example, location module 3335 
may acquire GPS coordinates from a GPS receiver, and 
determine that the GPS coordinates correspond to Washing 
ton, D.C. (e.g., by determining that the GPS coordinates are 
within the municipal boundaries of Washington, D.C.). 
Consequently, related metadata (e.g., the keywords “wash 
ington, d.c.,” “washington,” “district of columbia, etc.) 
may be associated with each of the photographs as it is 
captured. 

In an embodiment, the location information received by 
metadata-injection module 300 from location module 335 
may comprise more than a representation of a geolocation of 
the user device. For instance, the location information may 
comprise information that is related to or associated with a 
particular location. For example, location module 335, meta 
data-injection module 300, third-party application 250, and/ 
or another application may provide one or more user inter 
faces via which a user may associate descriptive information 
(e.g., text, dedicated metadata, etc.) with a particular loca 
tion (e.g., represented by GPS coordinates, address, etc.). 
Alternatively or additionally, descriptive information may 
be received in another manner (e.g., retrieved from an 
external system 150). In either case, the descriptive infor 
mation may be stored in association with the corresponding 
location information. In this manner, pairs of descriptions 
and location information may be stored in a locations 
database that is accessible to location module 335. The 
locations database may be hosted locally (e.g., on user 
system 130) or remotely (e.g., on metadata server 110 or an 
external system 150). If the locations database is hosted 
remotely, it may be accessed by location module 335 over 
one or more networks (e.g., network(s) 120) via Standard 
communication protocols. 
As an example, a user may associate location information 

for his or her parents white Victorian home with a descrip 
tion including “parents.” “family,” “Victorian.” “white,” etc. 
The description may be stored in association with the 
location information for the user's parents’ home (e.g., GPS 
coordinates, address, etc.) in a locations database. The 
locations database may be indexed by the location informa 
tion for retrieval based on location information. Thus, loca 
tion module 335 may perform a lookup in locations data 
base, based on location information received from metadata 
injection module 300, to retrieve descriptive information 
associated with the received location information. 

In an embodiment, metadata-injection module 300 may 
send or pass location information for content item 302 to 
location module 335. Alternatively, location module 335 
may acquire a current location of the user device (e.g., from 
a GPS receiver) to be used as the location information for 
content item 302 (e.g., if content item 302 is captured 
contemporaneously by the user device). In either case, 
location module 335 may compare the location information 
for content item 302 to location information stored in the 
database that is accessible to location module 335 to identify 



US 9,715,506 B2 
23 

any matches. The location information for content item 302 
may match location information stored in the database if one 
is within a vicinity (e.g., predefined radius) of the other, 
geographically contained within the other (e.g., location 
information consisting of “San Diego” would match location 
information consisting of “California' since San Diego is 
within California), and/or the like. If a match occurs, loca 
tion module 335 may retrieve the description associated with 
the matched location information from the database, and 
return at least a portion of the retrieved description as the 
location information to metadata-injection module 300 to be 
used for metadata. It should be understood that multiple 
locations stored in the database may match the location 
information associated with content item 302, in which case 
location module 335 may return multiple descriptions, all of 
which may be used by metadata-injection module 300 to 
generate metadata for injection into content item 302. 

1.2.3.7. Scheduling Module 
In an embodiment, metadata-injection module 300 

retrieves scheduling information from a scheduling module 
or application 340. Scheduling module 340 may be a module 
comprised in third-party application 250. Alternatively, 
scheduling module 340 may be an application or comprised 
in an application that is separate from third-party application 
250 (e.g., a separate application executing locally on user 
system 130, or a separate application executing remotely 
over network(s) 120 on a server or other system, such as 
metadata server 110, external system 150, or third-party 
platform 240), and metadata-injection module 300 may 
communicate with scheduling application 340 via one or 
more APIs. For example, scheduling module 340 may be or 
interface with a calendar or appointment application (e.g., 
Google CalendarTM Microsoft OutlookTM, etc.) that a user 
utilizes to temporally organize events in his or her life, a 
dispatch system which schedules dispatch activities (e.g., for 
asset management, installations, repairs, inspections, emer 
gency or non-emergency police, fire, or medical services, 
etc.), etc. 
The scheduling information may comprise or be derived 

from event information with one or more event details and 
one or more parameters defining a time or time period. The 
event detail(s) may comprise a title, location, description, 
and/or the like. The parameter(s) may comprise a start time 
(e.g., start timestamp), end time (e.g., end timestamp), or 
both a start time and end time (e.g., start timestamp and end 
timestamp). However, it should be understood that these are 
merely examples, and that the event detail(s) and/or param 
eter(s) may take any form Suitable to convey information 
associated with a time period. In the case that the scheduling 
information has been derived from the event information, 
the scheduling information may comprise metadata to be 
added to content item 302, instead of or in addition to the 
particular event detail(s) or parameter(s). 

In an embodiment, metadata-injection module 300 inter 
faces with scheduling application 340 to generate scheduled 
metadata. Scheduled metadata refers to metadata that is to be 
added to content items generated or received within a 
particular time period. Scheduling information for a particu 
lar time period may be input into scheduling application 340. 
For example, this scheduling information may comprise 
event information for an event that a user or system expects 
to occur at a specified time or within a specified time range 
(e.g., lunch, appointment, meeting, party, Vacation, inspec 
tion or maintenance of an asset, etc.). More generally, the 
scheduling information may comprise a set of metadata that 
is to be injected into content items generated or received at 
a specified time or within a specified time range. A time 

5 

10 

15 

25 

30 

35 

40 

45 

50 

55 

60 

65 

24 
range may include a start time (e.g., any time after 12:00 
pm), an end time (e.g., any time before 1:00 pm), or a start 
and end time (e.g., 12:00 pm to 1:00 pm). The start and/or 
end times may be represented as timestamps in Unix or 
Portable Operating System Interface (POSIX) time, which 
represents time as the number of elapsed seconds since Jan. 
1, 1970, or similar formats in which the timestamp conveys 
at least a specific year, month, day, hour, minute, and second. 
It should also be understood that a time range may be 
represented in other forms, such as a day (e.g., July 4, which 
may also be represented using a starting timestamp repre 
senting 12:00 am on July 4th and an end timestamp repre 
senting 11:59 pm on July 4th), month (e.g., January, which 
may also be represented as a starting timestamp representing 
12:00am on January 1st and an end time stamp representing 
11:59 pm on January 31st), and the like. 

After metadata-injection module 300 receives a content 
item 302, metadata-injection module 300 may access a 
timestamp representing the time of creation of content item 
302, and request or otherwise retrieve scheduling informa 
tion from scheduling module 340 based on this timestamp. 
Alternatively, metadata-injection module 300 may access a 
timestamp representing the time that content item 302 was 
received by metadata-injection module 302. As still another 
alternative, along with content item 302, metadata-injection 
module 300 may receive a timestamp as a parameter repre 
senting the time that should be used, or a parameter which 
specifies whether to use the timestamp representing the 
creation of content item 302, the timestamp representing 
when content item 302 was received by metadata-injection 
module 302, or another timestamp. 

In any case, metadata-injection module 300 may send or 
pass a timestamp to scheduling module 340, and scheduling 
module 340 may receive the timestamp and return schedul 
ing information to metadata-injection module based on that 
timestamp. Specifically, scheduling module 340 may return 
any scheduling information that comprises a time period that 
encompasses the time represented by the timestamp received 
from metadata-injection module 300. It should be under 
stood that the scheduling information may comprise event 
information for multiple scheduled events, including nested 
events. As an example, Scheduling module 340 may store the 
following four events (e.g., input by a user into a calendar 
application): (1) Conference in San Diego all day on July 
4th, (2) Meeting with John Smith from 10:00am to 4:00pm 
on July 4th, (3) Lunch at ABC Restaurant from 12:00 pm to 
1:00 pm on July 4th, and (4) Dinner with Jane Doe from 5:00 
pm to 7:00 pm on July 4th. If the received timestamp 
associated with content item 302 represents 12:30 pm on 
July 4th, scheduling module 340 may return metadata for 
events (1)-(3), but not (4), in response to the request. 
Specifically, scheduling module 340 may return, “Confer 
ence in San Diego,” “Meeting with John Smith.” “Lunch at 
ABC Restaurant,' since all of these events are associated 
with time periods that encompass the received timestamp, 
whereas "Dinner with Jane Doe' is associated with a time 
period that does not encompass the received timestamp. 
Notably, event (3) is nested within event (2), which is nested 
within event (1). After metadata-injection module 300 
receives the scheduling information returned by scheduling 
module 340, metadata-injection module 300 may generate 
metadata from the scheduling information. For instance, 
metadata-injection module 300 may associate the schedul 
ing information, as is, with content item 302, or may 
otherwise derived metadata from the scheduling information 
(e.g., by extracting the terms “San Diego,” “John Smith.” 
and “ABC Restaurant from the scheduling information). 



US 9,715,506 B2 
25 

Alternatively, scheduling module 340 may generate the 
metadata and return the metadata to metadata-injection 
module 300 to be used as the metadata injected into content 
item 302. 

In an alternative embodiment, metadata-injection module 
300 may generate metadata in advance of receiving content 
item 302. For example, metadata-injection module 300 may 
periodically poll scheduling module 340 to retrieve sched 
uling information related to a current or future time period 
(e.g., poll Scheduling module 340 at the beginning of every 
fifteen-minute period to retrieve scheduling information for 
that fifteen-minute period), scheduling module 340 may 
periodically send or pass scheduling information to meta 
data-injection module (e.g., pass scheduling information to 
metadata-injection module 300 at the beginning of every 
fifteen-minute period for that fifteen-minute period), sched 
uling module 340 may send or pass Scheduling information 
to metadata-injection module 300 at the start of any time 
period for which corresponding event information is stored, 
or scheduling module 340 may send or pass scheduling 
information to metadata-injection module 300 contempora 
neously with whenever the corresponding event information 
is received (e.g., pass the scheduling information to meta 
data-injection module 300 as soon as corresponding event 
information is received at scheduling module 340 or when 
ever it is modified at scheduling module 340). In these 
embodiments, after metadata-injection module 300 receives 
the scheduling information, metadata-injection module 300 
may generate the metadata in a similar manner as described 
above either before or after a relevant content item 302 is 
received. When metadata-injection module 300 receives a 
content item 302, metadata-injection module 300 may com 
pare the relevant timestamp (e.g., timestamp received with 
content item 302, representing the time of creation of 
content item 302, or representing the time of receipt of 
content item 302) to the time period in the scheduling 
information (or associated with previously-generated meta 
data for the scheduling information), and if time period(s) in 
the scheduling information encompass the timestamp, either 
generate the metadata or retrieve previously-generated 
metadata for the matching scheduling information and asso 
ciate the metadata with content item 302. 

In an embodiment, scheduling module 340, third-party 
application 250, or another application may provide one or 
more user interfaces that enable a user to associate sched 
uling information with a particular time period (e.g., repre 
sented by a start timestamp and end timestamp). As dis 
cussed above, these user interfaces may be part of a calendar 
or appointment application that a user utilizes to temporally 
organize and keep track of events in his or her life. Alter 
natively, these user interfaces may be specifically provided 
for Scheduling metadata, in which case the scheduling 
information may comprise data (e.g., text) that the user has 
specifically indicated should be used as the metadata. In 
either case, the user interface(s) may comprise inputs which 
allow the user to specify a state date and time, an end date 
and time, and/or a description or metadata to be associated 
with the time period represented by the start date and/or time 
and/or end date and/or time. The user interface(s) may also 
comprise input(s) for specifying whether or not the event 
represented by the description and time period is a one-time 
event (e.g., occurring for only a single time period) or 
recurring event (e.g., occurring for the same time period 
over the course of multiple days). The input(s) for entering 
a description or metadata may comprise one or more fields, 
Such as names of individuals, comments, title, location, etc. 

10 

15 

25 

30 

35 

40 

45 

50 

55 

60 

65 

26 
In an embodiment, scheduling module 340 may be used 

to schedule metadata from other metadata sources 220 (e.g., 
310–335 and 345-390). For example, as mentioned above, 
one or more user interfaces may be provided by Scheduling 
module 340, third-party application 250 or another applica 
tion, specifically for scheduling metadata. These user inter 
face(s) may enable a user to specify the metadata sources 
that should be retrieved for content items created during a 
defined time period. Thus, instead of or in addition to event 
details, the defined time period may be associated with an 
identification of one or more metadata sources to be used by 
metadata-injection module 300. Consequently, when meta 
data-injection module 300 receives a content item generated 
during the defined time period, it may only consult the 
metadata sources associated with that time period in Sched 
uling module 340. 
As an example, a user may utilize a user interface to create 

the following scheduled metadata sources: (1) for all day on 
Jul. 1, 2016, authorship module 315 and asset module 375, 
(2) from 9:00am to 4:00 pm on Jul. 1, 2016, location module 
335 and weather module 345, (3) from 12:00 pm to 1:00 pm 
on Jul. 1, 2016, object-recognition module 320, and (4) from 
6:00 pm on Jul. 1, 2016 to 8:00am on Jul. 3, 2016, contacts 
module 370. In this example, if metadata-injection module 
300 receives a content item 302 generated at 12:30 pm on 
Jul. 1, 2016, metadata-injection module 300 will only 
retrieve metadata from the metadata sources specified in (1), 
(2), and (3), but not (4). Notably, when the scheduling 
information is nested (e.g., (3) is nested entirely within (2), 
which is nested entirely within (1), and (4) is nested partially 
within (1)), metadata-injection module 300 may utilize all of 
the metadata sources in the nested scheduling information as 
well as the overarching scheduling information. Thus, for 
the content item 302 generated at 12:30 pm on Jul. 1, 2016, 
metadata-injection module 300 may only retrieve metadata 
from authorship module 315, asset module 375, location 
module 335, weather module 345, and object-recognition 
module 320. On the other hand, if a content item 302 were 
generated at 11:30 pm on Jul. 1, 2016, metadata-injection 
module 300 may only retrieve metadata from authorship 
module 315, asset module 375, and contacts module 370. 
However, it should be understood that in this embodiment 
there may be some modules (e.g., authorship module 315) 
from which metadata-injection module 300 always retrieves 
metadata, regardless of whether or not that module is 
identified in scheduling information. 

1.2.3.8. Weather Module 
In an embodiment, metadata-injection module 300 

retrieves weather information from a weather module 345. 
Weather module 345 may be a module comprised in third 
party application 250. Alternatively, weather module 345 
may be an application or service (e.g., web service) or 
comprised in an application or service that is separate from 
third-party application 250 (e.g., a separate application or 
service executing locally on user system 130, or a separate 
application executing remotely over network(s) 120 on a 
server or other system), and metadata-injection module 300 
may communicate with weather application or service 345 
via one or more APIs. For example, weather module 345 
may be a web service, such as the (National Oceanic and 
Atmospheric Administration (NOAA) National Weather 
Service (NWS). 
Weather information may comprise any weather-related 

information, including, without limitation, temperature, 
humidity, a general description (e.g., Sunny, partly cloudy, 
cloudy, rainy, thunderstorms, lightning, etc.), wind speed, 



US 9,715,506 B2 
27 

atmospheric pressure, precipitation, forecasts (e.g., chance 
of precipitation), weather alerts, etc. 

In an embodiment, weather module 345 may receive 
location information (e.g., city and State, Zip code, address, 
GPS coordinates, etc.) and/or time information (e.g., a 
timestamp representing a current, past, or future time) as an 
input. For example, metadata-injection module 300 may 
send or pass the location information and/or time informa 
tion to weather module 345 as parameter(s). In the case that 
location information is received, weather module 345 may 
return weather information relevant to the location repre 
sented by the location information (e.g., the temperature and 
humidity at that location). In the case that time information 
is received, weather module 345 may return weather infor 
mation relevant to the time represented by the time infor 
mation (e.g., the temperature and humidity at that time). In 
the case that location information and time information are 
received, weather module 345 may return weather informa 
tion relevant to the location and time represented by this 
information (e.g., the temperature and humidity at that 
location at that time). If the time is a current time, then the 
weather information will reflect the current weather, 
whereas if the time is a past time, then the weather infor 
mation will reflect historical weather, and, if the time is a 
future time, then the weather information may reflect a 
weather forecast. 

Weather module 345 may return the weather information 
for the location and/or time to metadata-injection module 
300, which may use the weather information to generate 
metadata (e.g., temperature, humidity, general description, 
etc.) to be injected into content item 302. In this manner, 
weather-related metadata may be added to a content item 
302 contemporaneously with creation of the content item 
302. As an example, if content item 302 is captured during 
a Sunny day, as indicated in weather information received 
from weather module 345, metadata-injection module 300 
may inject “sunny' in content item 302. In the case that 
content item 302 was previously captured, metadata-injec 
tion module 300 may send or pass time information (e.g., a 
timestamp) reflecting the time of capture to weather module 
345 in order to retrieve historic weather information. In this 
manner, even old content items can be injected with meta 
data reflecting the weather at the time of their capture. 

1.2.3.9. News Module 
In an embodiment, metadata-injection module 300 

retrieves news information from a news module 350. News 
module 350 may be a module comprised in third-party 
application 250. Alternatively, news module 350 may be an 
application or service (e.g., web service) or comprised in an 
application or service that is separate from third-party appli 
cation 250 (e.g., a separate application or service executing 
locally on user system 130, or a separate application execut 
ing remotely over network(s) 120 on a server or other 
system), and metadata-injection module 300 may commu 
nicate with news application or service 350 via one or more 
APIs. For example, news module 350 may be a web service, 
such as one provided by Thomson ReutersTM 
News information may comprise news articles, journal 

articles, breaking news, research, opinions, economic fore 
casts, stock or stock market activity, etc. 

In an embodiment, news module 350 may receive loca 
tion information (e.g., city and state, Zip code, address, GPS 
coordinates, etc.) and/or time information (e.g., a timestamp 
representing a current, past, or future time) as an input. For 
example, metadata-injection module 300 may send or pass 
the location information and/or time information to news 
module 350 as parameter(s). In the case that location infor 

10 

15 

25 

30 

35 

40 

45 

50 

55 

60 

65 

28 
mation is received, news module 350 may return news 
information relevant to the location represented by the 
location information (e.g., breaking news relevant to that 
location). Otherwise, news module 350 may return general 
news information (e.g., world or national events, stock or 
stock market activity, etc.). In the case that time information 
is received, news module 350 may return news information 
relevant to the time represented by the time information 
(e.g., significant news at that time). In the case that location 
information and time information are received, news module 
350 may return news information relevant to the location 
and time represented by this information (e.g., significant 
news at that location at that time). If the time is a current 
time, then the news information will reflect current news 
(e.g., breaking news), whereas if the time is a past time, then 
the news information will reflect historical news (e.g., 
significant news articles from that time period), and, if the 
time is a future time, then the news information may reflect, 
for example, an economic forecast. 
News module 350 may return the news information for 

the location and/or time to metadata-injection module 300, 
which may use the news information to generate metadata 
(e.g., significant news, relevant stock market activity, etc.) to 
be injected into content item 302. In this manner, news 
related metadata may be added to a content item 302 
contemporaneously with creation of the content item 302. 
As an example, if content item 302 is captured during a 
significant event, metadata-injection module 300 may inject 
metadata related to this event into content item 302 (e.g., so 
that the user could see what he or she was doing at the time 
of that event). In the case that content item 302 was 
previously captured, metadata-injection module 300 may 
send or pass time information (e.g., a timestamp) reflecting 
the time of capture to news module 350 in order to retrieve 
historic news information. In this manner, even old content 
items can be injected with metadata reflecting significant 
events at the time of their capture. 

1.2.3.10. Sensors 
In an embodiment, metadata-injection module 300 

retrieves sensor information from one or more sensors 355. 
Sensor(s) 355 may provide real-time or historic sensor 
information to metadata-injection module 300. Sensor(s) 
355 may be integral to a user system 130 executing third 
party application 250 and/or metadata-injection module 300 
and/or communicatively connected to user system 130, 
either directly or indirectly, via a wired or wireless connec 
tion. In the case that there are a plurality of sensors 355, the 
sensors may be communicatively connected to the device on 
which third-party application 250 and/or metadata-injection 
module 300 are executing via the same or different types of 
connections. For example, one sensor may communicate 
with metadata-injection module 300 over a Universal Serial 
Bus (USB), one sensor may communicate with metadata 
injection module 300 over a network (e.g., network(s) 120, 
which may include the Internet), one sensor may commu 
nicate with metadata-injection module 300 via a wireless 
technology standard (e.g., BluetoothTM, cellular technology, 
satellite technology, etc.), etc. 

Metadata-injection module 300 may receive sensor infor 
mation from sensor(s) 355, and use the sensor information 
as metadata or derive metadata from the sensor information. 
In either case, metadata-injection module 300 may inject the 
metadata into content item 302. 
The sensor information may comprise any type of data 

that is capable of being output from a sensor. Examples 
include, without limitation, a heartbeat from a heartbeat 
monitor, an electrocardiographical signal (ECG or EKG) 



US 9,715,506 B2 
29 

from electrodes attached to a patient, a blood pressure from 
a blood pressure monitor, a temperature from a thermometer, 
a speed from a speedometer or radar, acceleration from an 
accelerometer, atmospheric pressure from a barometer, 
lumens from a light sensor, an indication of a proximate 
object from a proximity sensor, weight from a scale, pitch, 
roll, and/or yaw from a gyroscope, latitude, longitude, 
and/or elevation from a GPS sensor, humidity from a 
hygrometer, motion from a seismometer, Voltage from a 
voltmeter, etc. It should be understood that the outputs of 
any type of sensor may be used. Possible sensors include, 
without limitation, a geophone, hydrophone, microphone, 
fuel sensor, air-fuel ratio meter, blind spot monitor, oxygen 
sensor, parking sensor, radar gun, speedometer, speed sen 
Sor, throttle position sensor, tire-pressure monitoring sensor, 
torque sensor, transmission fluid temperature sensor, wheel 
speed sensor, breathalyzer, carbon dioxide sensor, carbon 
monoxide sensor, holographic sensor, hydrogen sensor, 
hydrogen Sulfide sensor, infrared point sensor, potentiomet 
ric sensor, Smoke detector, current sensor, magnetometer, 
metal detector, Voltage detector, air flow meter, anemometer, 
flow sensor, gas meter, water meter, Geiger counter, neutron 
detector, air speed indicator, altimeter, depth gauge, gyro 
Scope, inertial navigation system, magnetic compass, vari 
ometer, auxanometer, free fall sensor, gravimeter, impact 
sensor, inclinometer, laser rangefinder, odometer, photoelec 
tric sensor, position sensor, rate sensor, shock detector, 
stretch sensor, tilt sensor, flame detector, infrared sensor, 
photodetector, barometer, pressure sensor, tactile sensor, 
hydrometer, level sensor, calorimeter, thermometer, pyrom 
eter, alarm sensor, motion detector, proximity sensor, occu 
pancy sensor, biosensor, Sonar, ultrasonic sensor, radio sen 
Sor, actigraphic sensor, heartbeat sensor, hyperspectral 
Sensor, etc. 

1.2.3.11. Closed Captions 
In an embodiment, metadata-injection module 300 

retrieves closed-captions information from a closed-captions 
module 360. In some cases, content item 302 may include 
closed captions, which may have been generated from audio 
data in content item 302 and added to content item 302 at a 
prior time (e.g., prior to the time at which content item 302 
was received by metadata-injection module 300, or after 
audio data from content item 302 has been processed by 
audio-to-text module 310 into subtitles that are then added 
to content item 302). Closed captions generally comprise 
text information that is embedded in or otherwise associated 
with content item 302, and typically represent at least a 
significant amount, if not all, of the dialogue and/or Sound 
effects present in the associated content item. 

In cases in which content item 302 comprises closed 
captions, the closed-captions data may be sent from meta 
data-injection module 300 to closed-captions module 360. 
The closed-captions data may be extracted from content 
item 302, and the extracted closed-captions data may be sent 
to closed-captions module 360. Alternatively, the entire 
content item 302 may be sent from metadata-injection 
module 300 to closed-captions module 360, and closed 
captions module 360 may extract the closed-captions data 
from content item 302. 

In an embodiment, closed-captions module 360 parses the 
text of the closed-captions data to extract one or more 
character strings based on one or more criteria. These 
criteria may include, without limitation, proper names (e.g., 
names of people or places), frequently appearing words 
(e.g., a certain number of significant words that appear the 
most frequently), peculiar words (e.g., relatively uncommon 
words), words that are relevant to particular metatags for a 

5 

10 

15 

25 

30 

35 

40 

45 

50 

55 

60 

65 

30 
standard file format (e.g., words matching, preceding, and/or 
following the name of a predefined metatag), etc. Alterna 
tively, metadata-injection module 300 may use the entire 
text of the closed-captions data as metadata. 

In any case, the character string(s) may be returned by 
closed-captions module 360 to metadata-injection module 
300 to be injected into content item 302 as metadata or to be 
used to generate metadata to be injected into content item 
3O2. 

1.2.3.12. Automatic Identification and Data Capture 
(AIDC) 

In an embodiment, metadata-injection module 300 
retrieves Automatic Identification and Data Capture (AIDC) 
information from an AIDC module 365. AIDC information 
refers to the automatic identification of objects and/or the 
automatic collection of external data about those objects. 
AIDC technologies include, without limitation, bar codes, 
Quick Response (QR) codes, Radio Frequency Identification 
(RFID), biometrics (e.g., facial recognition, iris recognition, 
fingerprint recognition, etc.), magnetic stripes, Optical Char 
acter Recognition (OCR), Smart codes, and Voice recogni 
tion. 

In an embodiment, AIDC module 365 may be comprised 
in, comprise, or work in conjunction with object-recognition 
module 320. Specifically, object-recognition module 320 
may recognize objects (e.g., represented by images or audio 
segments) in content item 302, and AIDC module 365 may 
collect information about the recognized objects to be used 
for metadata by metadata-injection module 300. 
As an example, content item 302 may comprise an image 

of a barcode or QR code. Metadata-injection module 300 
may send or pass content item 302 to object-recognition 
module 320, which identifies the barcode or QR code. 
Object-recognition module 320 may return the barcode or 
QR code to metadata-injection module 300 which sends or 
passes the barcode or QR code to AIDC module 365, or 
objection-recognition module 320 may send or pass the 
barcode or QR code directly to AIDC module 365 (in which 
case, AIDC module 365 may return the AIDC information to 
object-recognition module 320, which returns the AIDC 
information to metadata-injection module 300), depending 
on the particular implementation. Alternatively, metadata 
injection module 300 may send or pass content item 302 to 
AIDC module 365, which may be programmed to identify 
the barcode or QR code without the aid of object-recognition 
module 320 (e.g., using identical or similar object-recogni 
tion techniques as described with respect to object-recogni 
tion module 320). 

In either case, AIDC module 365 may decode the barcode 
or QR code to produce a character string. At least a portion 
of this character string may represent metadata to be injected 
into content item 302, in which case, it may be returned to 
metadata-injection module 300 to be injected into content 
item 302. Alternatively or additionally, at least a portion of 
this character string may identify or reference additional 
metadata to be injected into content item 302. For example, 
the character string may include a Uniform Resource Iden 
tifier (URI) (e.g., a Uniform Resource Locator (URL)). In 
this case, AIDC module 365 may acquire the resource (e.g., 
webpage) at the URI and return that resource or metadata 
derived (e.g., extracted) from that resource to metadata 
injection module 300 to be injected into content item 302. 
As another example, AIDC module 365 may perform 

OCR on content item 302 (or receive the results of OCR 
performed by object-recognition module 320) to convert 
visual representations of one or more characters in content 
item 302 into one or more character strings. AIDC module 



US 9,715,506 B2 
31 

365 may then return these character string(s) or metadata 
derived (e.g., extracted) from these character string(s) to 
metadata-injection module 300 to be injected into content 
item 302. For example, if content item 302 comprises a 
photograph of a “stop' sign, AIDC module 365 may recog 
nize the word “stop' and return the word “stop’ as metadata 
to metadata-injection module 300. If content item 302 
comprises a photograph of a document, AIDC module 365 
may OCR the document and return the document text to 
metadata-injection module 300. 
As another example, AIDC module 365 may be commu 

nicatively connected to an RFID reader, which receives 
information from one or more RFID tags in the proximity of 
the RFID reader, a magnetic stripe reader which reads 
information from a magnetic stripe (e.g., of an identification 
card), and/or a Smart card reader which reads information 
from an integrated circuit in a Smart card. In each of these 
cases, the information may be received by AIDC module 
365 and returned to metadata-injection module 300 and/or 
used to derive (e.g., extract) metadata that is returned to 
metadata-injection module 300 to be injected into content 
item 302. 

1.2.3.13. Contacts Module 
In an embodiment, metadata-injection module 300 

retrieves contact information from a contacts module 370. 
Contacts module 370 may be a module comprised in third 
party application 250. Alternatively, contacts module 340 
may be an application or comprised in an application that is 
separate from third-party application 250 (e.g., a separate 
application executing locally on user system 130, or a 
separate application executing remotely over network(s) 120 
on a server or other system), and metadata-injection module 
300 may communicate with contacts application 370 via one 
or more APIs. For example, contacts module 370 may be an 
address book application or module (e.g., a contacts list 
managed by the AndriodTM or iOSTM operating system, 
Microsoft OutlookTM, etc.) that a user utilizes to organize 
personal and/or professional contacts. 
The contact information may comprise or be derived from 

one or more contact records Stored in a contacts database 
comprising a plurality of contact records. Each contact 
record may comprise a contacts first name, middle name, 
last name, Suffix, nickname, title, employer, relationship to 
the user (e.g., spouse, parent, boss, coworker, friend, etc.), 
phone number(s), email address, mailing address or address 
of residence, notes regarding the contact, and/or the like. 
The contact information may comprise the metadata to be 
inject into content item 302 or information from which 
metadata-injection module 300 derives the metadata to be 
injected into content item 302. 

Metadata-injection module 300 may send or pass a por 
tion of a contacts information in a query to contacts module 
370. This portion of contact information may have been 
retrieved or derived from information or metadata received 
from one or more of the other metadata sources 220. For 
example, metadata-injection module 300 may receive or 
derive a first and last name from another metadata source, 
Such as audio-to-text module 310 (e.g., if the name was 
mentioned in audio data in content item 302), object 
recognition module 320 (e.g., if object information associ 
ated with an identified face comprises the name), user 
interface 325 (e.g., if the user manually inputs the name), 
location module 335 (e.g., if the user device is within a 
predefined radius of a location associated with the name), 
scheduling module 340 (e.g., if scheduling information for 
an event occurring during the creation date and time of 
content item 302 comprises the name), and/or closed-cap 

10 

15 

25 

30 

35 

40 

45 

50 

55 

60 

65 

32 
tions module 360 (e.g., if closed captions for content item 
302 comprise the name). Metadata-injection module may 
then send or pass this first and last name to contacts module 
370. As another example, metadata-injection module 300 
may receive or derive an address from another metadata 
Source. Such as location module 335 (e.g., a current location 
of the user device). 

Contacts module 370 may receive the query from meta 
data-injection module 300, and use the portion of contact 
information in the query to retrieve one or more contact 
records from the contacts database. For example, contacts 
module 370 may search the contact records in the contacts 
database to identify one or more contact records comprising 
the portion of contact information. Using the example 
above, if the query comprises a first name and last name 
(e.g., obtained from another metadata source), contacts 
module 370 may search the plurality of contact records to 
identify at least one contact record containing both the first 
name (e.g., in a first name field of the contact record) and the 
last name (e.g., in a last name field of the contact record). 
Using the other example above, if the query comprises a 
location (e.g., a current location of the device received from 
location module 335), contacts module 370 may search the 
plurality of contact records to identify at least one contact 
record containing the address. 

If a contact record matching the portion of contact infor 
mation is identified from the contacts database, contacts 
module 370 may return the full contact record or at least a 
portion of the contact record (e.g., the portion representing 
metadata to be injected into content item 302) to metadata 
injection module 300. Using the example above, if a contact 
record is identified having the first name and last name from 
the portion of contact information in the query received from 
metadata-injection module 300, contacts module 370 may 
return contact information from that contact record, such as 
a title, an employer, a relationship to the user, one or more 
telephone numbers and types (e.g., work, home, mobile, 
etc.), an email address, mailing address or address of resi 
dence, notes regarding the contact, etc. It should be under 
stood that, if no contact record matching the portion of 
contact information is identified, contacts module 370 may 
return nothing or may return an indication that no contact 
record was identified. 

In an embodiment, the contacts database may comprise 
records other than representing friends, family, coworkers, 
etc. For example, the contacts database may comprise 
patient records, employee records, etc. In such a case, 
contacts module 370 may more appropriately be referred to 
as a patients module, employees module, etc., respectively. 
However, it should be understood that contacts module 370 
may operate in the same manner regardless of the type of 
personal relationships that the database records actually 
represent. 

1.2.3.14. Asset Module 
In an embodiment, metadata-injection module 300 

retrieves asset information from an asset module 375. Meta 
data-injection module 300 may receive an identification of 
an asset from one or more of the other metadata sources 220. 
This asset identifier may comprise, for example, an 
employee identifier, a patient identifier, an identifier of an 
infrastructure component (e.g., a wind turbine, motor, trans 
mission line, vehicle, machine, tool, pipe, valve, sensor, 
etc.), an identifier of an inventory item (e.g., consumer 
product), etc. The identifier may comprise a character string 
(e.g., a string of numbers, an alphanumeric character string, 
etc), and may be unique (e.g., representing a single instance 
of a particular asset) or non-unique (e.g., representing a type, 



US 9,715,506 B2 
33 

class, or category of asset). As an example, metadata 
injection module 300 may receive the asset identifier from 
AIDC module 365. AIDC module 365 may have decoded or 
received the asset identifier from a barcode, QR code, OCR, 
RFID tag, magnetic stripe, Smart card, etc., as described 
elsewhere herein. Metadata-injection module 300 may 
determine that the metadata received from AIDC module 
365 comprises an asset identifier and send or pass the asset 
identifier to asset module 375. Alternatively, metadata 
injection module 300 could pass all metadata received from 
particular metadata source(s) (e.g., AIDC module 365, a 
dedicated asset identifier field in user interface 325, etc.) or 
all metadata sources to asset module 375, and asset module 
375 could return any asset information associated with 
portions of that metadata (e.g., by performing queries for all 
portions of the metadata against one or more asset databases 
in a brute force search method) to metadata-injection mod 
ule 300. 

In an embodiment, asset module 375 receives the asset 
identifier from metadata-injection module 300 and may 
query one or more asset databases based on the received 
asset identifier. The asset database(s) may be local (e.g., on 
the same device) or remote (e.g., across network(s) 120) 
from asset module 375. In either case, asset module 375 may 
generate a request or query comprising the asset identifier to 
perform a lookup on the database(s). In the case that an asset 
database is local, asset module 375 may perform a lookup on 
the asset database using the asset identifier. In the case that 
an asset database is remote, asset module 375 may send the 
request over one or more networks (e.g., network(s) 120, 
which may include the Internet) to a database server, which 
may perform a lookup on the asset database using the asset 
identifier and return one or more matches. Any matches may 
be returned as metadata to metadata-injection module 300, 
or used to derive (e.g., extract) metadata which is returned 
to metadata-injection module 300. 

The asset information returned by asset module 375 to 
metadata-injection module 300 may comprise any informa 
tion associated with an asset identifier, for example, in an 
asset database. The asset information may differ depending 
on the type of asset. As an example, asset information 
associated with an asset identifier for a patient may comprise 
a medical record for that patient, including name, images 
(e.g., patient photograph, X-rays, slide images, etc.), insur 
ance information, physicians notes, test results, and/or the 
like. Asset information associated with an asset identifier for 
a wind turbine may comprise a location, operating statistics, 
model number, manufacturer's name, inspection and main 
tenance reports, etc. Asset information associated with an 
asset identifier for a vehicle may comprise a make, model, 
year, color, license plate number, vehicle identification num 
ber (VIN), insurance information, driver information, 
inspection and maintenance reports, etc. Metadata-injection 
module 300 may derive metadata, to be injected into content 
item 302, from all or a portion of the received asset 
information. 

1.2.3.15. Digital Rights Management (DRM) Module 
In an embodiment, metadata-injection module 300 

retrieves digital rights management (DRM) information 
from a DRM module 380. DRM information may be pre 
defined and stored in DRM module 300, and retrieved by 
metadata-injection module 300 when a content item 302, 
matching one or more criteria, is received. For example, the 
one or more criteria may comprise certain authorship infor 
mation retrieved from authorship module 315 (e.g., content 
item 302 was generated by a predefined author), scheduling 
information retrieved from scheduling module 340 (e.g., 

5 

10 

15 

25 

30 

35 

40 

45 

50 

55 

60 

65 

34 
content item 302 was generated during a predefined time 
period), AIDC information retrieved from AIDC module 
365 (e.g., content item 302 comprises an AIDC code or was 
captured contemporaneously with the reading of AIDC 
information that identifies a DRM scheme), and/or other 
criteria, including criteria not determined based on informa 
tion retrieved from a metadata source (e.g., content item 302 
is of a predefined type or is received from a predefined 
source). The DRM information may comprise an identifi 
cation of a DRM scheme or an implementation of a DRM 
scheme. 

Metadata-injection module 300 may utilize the DRM 
information retrieved from DRM module to apply a DRM 
scheme to content item 302. For example, the DRM scheme 
governing content item 302 may be embedded as metadata 
into content item 302 to produce a DRM-injected content 
item 304. In a simple example, the DRM scheme may 
simply be a copyright notice which is embedded in a 
metadata field of content item 302 (e.g., in the “Copyright' 
field for IPTC). However, it should be understood that more 
advanced DRM may be used. 

1.2.3.16. Quick Tag Module 
In an embodiment, metadata-injection module 300 

retrieves quick-tag information from a quick-tag module 
385. Quick-tag module 385 enables a user to quickly add 
metadata to one or more content items 302. Due to its 
functional similarities, in certain aspects of an embodiment, 
to audio-to-text module 310, user interface 325, and sched 
uling module 340, quick-tag module 385 may comprise 
audio-to-text module 310, user interface 325, and/or sched 
uling module 340, be comprised in one of these metadata 
sources, or be otherwise interfaced with these metadata 
SOUCS. 

In an embodiment, quick-tag module 385 receives an 
audio input from a user. For example, quick-tag module 385 
may interface with a microphone of user system 130 to 
record audio in response to a user operation. The user 
operation may comprise a user selection of a soft key (e.g., 
provided by user interface 325 or a user interface of third 
party application 250), for example, by touching the key on 
a touch panel display or selecting the key using a pointing 
device (e.g., mouse, trackball, etc.). Alternatively, the user 
operation may comprise a user pressing a hard key (e.g., 
provided on a housing of user system 130, keyboard, etc.). 

In response to the user operation, user interface 325 or 
third-party application 250 may prompt the user to begin 
recording (e.g., via an icon and/or text on a user interface, a 
Sound, a vibration, a light, etc.), and sound received through 
the microphone of user system 130 is then recorded. Another 
user operation may be used to end recording (e.g., selection 
of a soft or hard key, as described above, initiation of a 
photograph or video recording, etc.), or the recording may 
be automatically ended after a predefined time period (e.g., 
5 seconds) or after no sound is detected for a predefined time 
period (e.g., 1 second). 

Metadata-injection module 300 may receive this audio 
recording from quick-tag module 385, send or pass it to 
audio-to-text module 310 to be converted into text, and 
receive the text from audio-to-text module 310. Alterna 
tively, quick-tag module 385 could perform the audio-to-text 
conversion or comprise audio-to-text module 310, as men 
tioned above, in which case quick-tag module 385 returns 
the text output to metadata-injection module 300. In either 
case, the text may be received by metadata-injection module 
300 and injected into content item 302. 

In an alternative embodiment, metadata-injection module 
300 may inject the quick-tag audio recording, as metadata, 



US 9,715,506 B2 
35 

into content item 302, without converting it to text, or in 
addition to injecting the text. In addition, the quick tag may 
be something other than an audio-recording. For example, 
the quick tag may comprise text which is entered into a user 
interface, instead of audio input into a microphone. Thus, as 
used herein, the term "quick tag may refer to any type of 
user input, and the term "quick-tag metadata” may refer to 
the metadata derived from that user input. The quick-tag 
metadata may comprise the user input itself, portion(s) of the 
user input, a conversion of the user input (e.g., text output 
from an audio-to-text conversion of an audio quick-tag), 
and/or the like. 

In an embodiment, the quick-tag metadata is injected, by 
metadata-injection module 300, into all or a subset of 
content items that are captured contemporaneously with the 
input of the quick-tag (e.g., contemporaneously with the 
recording of an audio input or receipt of a text input). This 
may be implemented, for example, in any one of the 
following manners: 

(1) The quick-tag is recorded at time T. Metadata 
injection module 300 adds the quick-tag metadata to any 
future content items created within AT of T, i.e., within the 
time period {T, T+AT}. 

(2) The quick-tag is recorded at time T. Metadata 
injection module 300 adds the quick-tag metadata to any 
prior content items created within AT of T, i.e., within the 
time period (T-AT. T}. 

(3) The quick-tag is recorded at time T. Metadata 
injection module 300 adds the quick-tag metadata to any 
prior or future content items created within AT of T, i.e., 
within the time period (T-AT. T+AT}. In this case, AT 
may be different for prior and future content items, such that 
metadata-injection module 300 adds the quick-tag metadata 
to any content items created within the time period between 
{T-AT. T+AT}, where ATzAT. 

(4) The quick-tag is recorded at time T. Metadata 
injection module 300 adds the quick-tag metadata to the N 
most proximate content items created after T. For example, 
if N is five, and the first content items created after T are, 
in chronological order, A, B, C, D, E, F, and G, metadata 
injection module 300 would inject the quick-tag metadata 
into each of A-E, but not F and G. 

(5) The quick-tag is recorded at time T. Metadata 
injection module 300 adds the quick-tag metadata to the N 
most proximate content items created before T. For 
example, if N is five, and the content items created before T 
are, in chronological order, A, B, C, D, E, F, and G. 
metadata-injection module 300 would inject the quick-tag 
metadata into each of C-G, but not A and B. 

(6) The quick-tag is recorded at time T. Metadata 
injection module 300 adds the quick-tag metadata to the N 
most proximate content items created before and after T. 
For example, if N is five, the content items created before T 
are, in chronological order, A, B, C, D, E, F, and G, and the 
content items created after T are, in chronological order, H. 
I, J, K, L, M, and O. metadata-injection module 300 would 
inject the quick-tag metadata into each of C-L, but not A, B, 
M, and O. 

(7) The quick-tag is recorded at time T. Metadata 
injection module 300 adds the quick-tag metadata to any 
future content items created within AT of T or AT from an 
immediately preceding content item into which the quick 
tag metadata was injected, where AT-AT or ATzAT. In 
an example, T=12:00 pm, AT=10 minutes, AT-5 min 
utes, and content item A is received at 12:05 pm, B at 12:07 
pm, C at 12:11 pm, D at 12:12 pm, E at 12:17 pm, F at 12:26 
pm, and G at 1:00 pm. In this example, content item A is 

5 

10 

15 

25 

30 

35 

40 

45 

50 

55 

60 

65 

36 
received within AT of T (i.e., 5 minutes<10 minutes), thus, 
content item A is injected with the quick-tag metadata. 
Content item B is received within AT of T (i.e., 7 min 
utes.<10 minutes) and also within AT of content item A (2 
minutes.<5 minutes), thus, content item B is also injected 
with the quick-tag metadata. Content item C is not received 
within AT of T (i.e., 11 minutes-d10 minutes) but is 
received within AT of content item B (i.e., 4 minutes.<5 
minutes), thus, content item C is also injected with the 
quick-tag metadata. Content item D is not received within 
AT of T (i.e., 12 minutes 10 minutes) but is received 
within AT of content item C (i.e., 1 minutes.<5 minutes), 
thus, content item D is also injected with the quick-tag 
metadata. Similarly, content item E is not received within 
AT of T1 (i.e., 17 minutes-10 minutes) but is received 
within AT, of content item D (i.e., 5 minutes=5 minutes), 
thus, content item E is also injected with the quick-tag 
metadata. Content item F is not received within AT of T 
(i.e., 26 minutes 10 minutes) and is not created within AT, 
of a most recent preceding content item (i.e., 9 minutes from 
the most recent preceding content item E>5 minutes), thus, 
content item F is not injected with the quick-tag metadata. 
Similarly, content item G is also not injected with the 
quick-tag metadata. 

In either of these implementations, AT, AT, AT, and N 
may be set to any Suitable value. As examples, AT, AT, 
and/or AT could be 30 seconds, 5 minutes, 10 minutes, 15 
minutes, 30 minutes, 1 hour, 5 hours, 25 hours, etc., and N 
could be 5, 10, 20, 100, etc. Each of these values may be a 
user setting, such that the user can specify the values of AT, 
AT, AT, and/or N via one or more user interfaces (e.g., 
provided by third-party application 250 or metadata-injec 
tion module 300). 
The particular implementation used for determining 

which content items into which to inject the quick-tag 
metadata may also be a user setting, such that the user can 
specify whether he wants to add quick-tag metadata accord 
ing to implementation (1), (2), (3), (4), (5), and/or (7) above 
via one or more user interfaces (e.g., provided by third-party 
application 250 or metadata-injection module 300). 

In an embodiment, the user interface for setting the values 
and/or implementation may be provided at or near the time 
that the quick tag is received. For instance, the user interface 
for setting the values and/or implementation may be the 
same as the user interface for recording or receiving the 
quick tag in the first place. For example, the user interface 
that is provided in response to the user operation to input the 
quick tag may comprise inputs for entering or selecting the 
desired values for AT, AT, AT, and/or N and/or the 
implementation (1)-(7) (or other) to be used. 

In an embodiment, after a quick tag has been exhausted— 
e.g., after the time period for the quick tag has expired or the 
number of content items has been reached—metadata-injec 
tion module 300 may stop injecting quick-tag metadata (e.g., 
stop retrieving quick-tag metadata from quick-tag module 
385) until another quick tag is received. 
As an example, a user, prior to taking a photograph using 

his or her mobile device, may select a quick-tag button on 
a user interface provided by quick-tag module 385, and 
speak. The words spoken by the user are recorded and 
converted by quick-tag module 385 into text. Subsequently, 
when metadata-injection module 300 receives a new content 
item 302, metadata-injection module 300 retrieves the text 
from quick-tag module 385, and embeds the text, as meta 
data, into content item 302 to generate metadata-injected 
content item 304. Metadata-injection module 300 may con 
tinue to do this until the quick tag expires (e.g., after a 



US 9,715,506 B2 
37 

certain amount of time or after a certain number of content 
items have been received and injected with the quick-tag 
metadata). 

1.2.3.17. Point-of-Sale (POS) Module 
In an embodiment, metadata-injection module 300 

retrieves point-of-sale (POS) information from a POS mod 
ule 390. For example, POS module 390 may comprise or be 
integrated in or interfaced with a POS system of a merchant. 
Metadata-injection module 300 may generate descriptive 
metadata from the POS information and inject it into content 
item 302 to create metadata-injected content item 304. It 
should be understood that, as with all of the metadata 
sources 220 (e.g., modules 310-390), metadata-injected con 
tent item 304 may be a non-composite or composite content 
item, as described elsewhere herein. 

In an embodiment, the POS information retrieved from 
POS module 390 may comprise information related to a 
transaction occurring or which has previously occurred at a 
POS terminal, for example, in a merchant's retail location. 
For example, during the transaction, as a cashier scans a 
product being purchased, the barcode (e.g., captured using a 
conventional barcode scanner of the POS terminal) and/or 
an image of the product (e.g., captured by a camera at the 
POS terminal) may be passed as content item 302 to 
metadata-injection module 300 (e.g., by a third-party appli 
cation 250 executing on the POS terminal or over a network 
at a central location within the merchant’s POS system). 
Metadata-injection module 300 may retrieve the POS infor 
mation from POS module 390 and inject it into content item 
302 to create metadata-injected content item 304. It should 
be understood that other metadata may also be injected into 
content item 302. For example, if content item 302 com 
prises an image of the barcode on the scanned product, 
metadata-injection module 300 may pass the image of the 
barcode to AIDC module 365 to convert it into a product 
identifier, and then pass the product identifier returned by 
AIDC module 365 to asset module 375 to retrieve product 
information about the scanned product, which can then be 
added by metadata-injection module 300 to metadata-in 
jected content item 304. 

In an embodiment, the POS information may comprise a 
time of the transaction, a terminal identifier for the POS 
terminal which was used to conduct the transaction, a store 
identifier for the store in which the transaction was con 
ducted, an employee identifier for the cashier who con 
ducted the transaction, an identifier of the consumer who 
purchased the product, a price paid for the product, a method 
of payment, and/or the like. In addition, metadata-injected 
content item may be a non-composite content item, or may 
be a composite content item. As an example, for a transac 
tion comprising a plurality of purchased products, a content 
item may be acquired for each of the purchased products 
(e.g., images of barcodes and/or the products themselves) in 
the transaction, and these content items may be composed 
into a composite image (i.e., comprised in metadata-injected 
content item 304) representing each of the products in the 
transaction. 

1.2.3.18. Module Interactions 
In an embodiment, information may be passed between 

one or more of the metadata sources 220 (e.g., modules 
310-390), either directly via interfaces of the metadata 
sources or indirectly via metadata-injection module 300. For 
example, in the indirect case, metadata-injection module 300 
may retrieve information from one metadata source and send 
or pass at least a portion of the retrieved information to 
another metadata source. In the direct case, one metadata 

10 

15 

25 

30 

35 

40 

45 

50 

55 

60 

65 

38 
Source may request and receive information from another 
metadata source. A few non-limiting examples will now be 
described. 

In an embodiment, metadata-injection module 300 may 
utilize information from scheduling module 340 and loca 
tion module 335 to detect discrepancies with respect to 
scheduled metadata for a received content item. For 
instance, metadata-injection module 300 may extract meta 
data for an event from scheduling information received from 
scheduling module 340. If the metadata includes location 
information (e.g., an address, city, state, name of a place, 
GPS coordinates, etc.), metadata-injection module 300 may 
retrieve, from location module 335, location information 
representing a current location of the user device (e.g., that 
is executing third-party application 250 and/or metadata 
injection module 300). At one or more times during the time 
period defined in the scheduling information (e.g., at the 
start of the time period, every fifteen minutes from the start 
of the time period, etc.), metadata-injection module 300 may 
compare the location information from the scheduling infor 
mation to the current location information. If the comparison 
indicates that the location information does not match (e.g., 
the location information from the scheduling information 
and the current location information are mutually exclusive), 
this discrepancy may be flagged. As an example, the location 
information from the scheduling information may indicate 
that the user (and by implication, the user device) should be 
currently attending an event in San Diego, Calif., whereas 
the current location information may indicate that the user 
device is in Los Angeles, Calif., in which case the discrep 
ancy may be flagged. On the other hand, if the location 
information from the scheduling information indicated that 
the user should be currently attending an event in San Diego, 
Calif., and the current location information indicated that the 
user device is at an address in San Diego, Calif., then no 
discrepancy is flagged. 
When a discrepancy is detected, metadata-injection mod 

ule 300, third-party application 250, or another module or 
application may prompt the user, using one or more user 
interfaces (e.g., user interface 325), to confirm, modify, 
and/or cancel the scheduled metadata to be associated with 
the content item. Using the example above, if the location 
information from the scheduling information indicates that 
the user is attending an event in San Diego and the current 
location information indicates that the user device is in Los 
Angeles, the user interface(s) may prompt the user with "Are 
you really in San Diego?” or “Are you in Los Angeles?” The 
user interface(s) may enable the user to modify the sched 
uled metadata and/or the scheduling information, confirm 
that the user is in Los Angeles and cancel the scheduled 
metadata, confirm that the user is in San Diego and proceed 
with the unmodified scheduled metadata, etc. 

Similarly, in an embodiment, metadata-injection module 
may utilize information from scheduling module 340 and 
object-recognition module 320 to detect discrepancies with 
respect to scheduled metadata for a received content item. 
For instance, metadata-injection module 300 may extract 
metadata for an event from scheduling information received 
from scheduling module 340, and may receive the metadata 
associated with a reference object identified in the content 
item by object-recognition module 320. If the metadata 
includes location information (e.g., an address, city, state, 
name of a place, GPS coordinates, etc.) and the metadata 
associated with the reference object comprises location 
information (e.g., if the reference object represents a place 
or landmark), metadata-injection module 300 may compare 
the location information from the scheduling information to 



US 9,715,506 B2 
39 

the location information from the metadata associated with 
the identified reference object. If the comparison indicates 
that the location information does not match (e.g., the 
location information from the scheduling information and 
the location information for the identified reference object 
are mutually exclusive), this discrepancy may be flagged. As 
an example, the location information from the scheduling 
information may indicate that the user (and by implication, 
the user device) should be attending an event in San Diego, 
Calif., whereas the identified reference object represents Mt. 
Rushmore and indicates South Dakota, in which case the 
discrepancy may be flagged. On the other hand, if the 
location information from the scheduling information indi 
cated that the user should be attending an event in San 
Diego, Calif., and the identified reference object represents 
the USS Midway Museum, then no discrepancy is flagged. 
Discrepancies may be handled by prompting the user to 
confirm, modify, and/or cancel the scheduled metadata, as 
discussed above. It should be understood that this embodi 
ment may be used in addition or as an alternative to the 
embodiment which utilizes current location information 
from location module 335. 
As mentioned elsewhere herein, in an embodiment, meta 

data-injection module 300 may utilize information obtained 
from one or more of audio-to-text module 310, object 
recognition module 320, user interface 325, location module 
335, scheduling module 340, closed-captions module 360, 
AIDC module 365, and any of the other metadata sources 
220 to retrieve contact information from contact module 
370. As an example, audio-to-text module 310 may convert 
audio data from content item 302 into text, which may 
contain contact information, such as a person's name(s). 
nickname, title, employer, relationship, telephone number, 
email address, Street address, and/or the like. This contact 
information may be returned to metadata-injection module 
300, and sent or passed by metadata-injection module 300 to 
contacts module 370. Contacts module 370 may then use the 
received contact information to search the contacts database 
and return contact information derived from one or more 
matching contact records to metadata-injection module 300. 

Similarly, object-recognition module may identify a face 
or other object in content item 302, and return object 
information associated with the matched reference object to 
metadata-injection module 300. Again, this object informa 
tion may comprise first contact information (e.g., a name), 
and metadata-injection module 300 may send or pass this 
first contact information to contacts module 370 to retrieve 
second contact information from one or more contact 
records based on the first contact information. 
As another example, user interface 325 may receive first 

contact information from a user (e.g., who may enter the 
contact information into one or more fields of user interface 
325) and return this first contact information to metadata 
injection module 300, which may then retrieve second 
contact information, based on the first contact information, 
from contacts module 370. 
As another example, location module 335 may utilize 

current location information or location information 
received from metadata-injection module to identify meta 
data related to that location. For example, as described 
elsewhere herein, location module may search a locations 
database, comprising associations between location infor 
mation and metadata, to identify metadata associated with 
location information within a vicinity of (e.g., within a 
predefined radius or encompassed by) the current location 
information. Location module 335 may then return any 
identified metadata to metadata-injection module 300. This 

10 

15 

25 

30 

35 

40 

45 

50 

55 

60 

65 

40 
returned metadata may comprise first contact information 
(e.g., an address). Metadata-injection module 300 may then 
send or pass this first contact information to contacts module 
370 to retrieve second contact information, based on the first 
contact information. 
As another example, metadata-injection module 300 may 

receive scheduling information, relevant to a particular time 
period related to content item 302 (e.g., time of creation of 
content item 302), from scheduling module 340 which 
comprises first contact information (e.g., a name, title, 
employer, relationship, telephone number, email address, 
and/or street address). Such contact information may be 
stored, for example, as event details in event information 
from which the scheduling information is derived. Meta 
data-injection module 300 may extract this first contact 
information from the scheduling information, and send or 
pass this first contact information to contacts module 370 to 
retrieve second contact information, based on the first con 
tact information. 
As another example, metadata-injection module 300 may 

receive metadata (e.g., extracted from closed captions asso 
ciated with content item 302) from closed-captions module 
360. This metadata may comprise first contact information 
(e.g., a name, title, employer, relationship, telephone num 
ber, email address, and/or Street address). Such contact 
information may be spoken, for example, by one or more 
subjects of content item 302. Metadata-injection module 300 
may extract this first contact information from the metadata, 
and send or pass this first contact information to contacts 
module 370 to retrieve second contact information, based on 
the first contact information. 
As another example, metadata-injection module 300 may 

receive AIDC information (e.g., acquired from an AIDC 
code in content item 302) from AIDC module 365. The 
AIDC information may comprise first contact information 
(e.g., a name, title, employer, telephone number, email 
address, and/or street address). Such contact information 
may be encoded, for example, in an AIDC code, Such as a 
bardcode or QR code. Metadata-injection module 300 may 
extract this first contact information from the AIDC infor 
mation, and send or pass this first contact information to 
contacts module 370 to retrieve second contact information, 
based on the first contact information. 

In an embodiment, metadata-injection module 300 may 
receive audio input from user interface 325, and send or pass 
the audio input to audio-to-text module 310 to be converted 
into text. Audio-to-text module 310 may return the text to 
metadata-injection module 300, which may utilize the 
returned text to generate metadata. Alternatively, audio-to 
text module 310 may generate the metadata from the text 
and return the generated metadata to metadata-injection 
module 300. In either case, generating the metadata may 
comprise extracting character Strings, to be used as meta 
data, from the text according to one or more criteria. These 
criteria may include, without limitation, proper names (e.g., 
names of people or places), frequently appearing words 
(e.g., a certain number of significant words that appear the 
most frequently), peculiar words (e.g., relatively uncommon 
words), words that are relevant to particular metatags for a 
standard file format (e.g., words matching, preceding, and/or 
following the name of a predefined metatag), etc. Alterna 
tively, the entire text from audio-to-text module 310 may be 
used as the metadata. Regardless of how the metadata is 
generated, metadata-injection module 300 may inject the 
metadata into content item 302. 

In an embodiment, metadata-injection module 300 may 
receive location information from location module 335, and 



US 9,715,506 B2 
41 

send or pass this location information to weather module 
345, as discussed elsewhere herein, to retrieve weather 
information relevant to the location represented in the loca 
tion information. Additionally or alternatively, metadata 
injection module 300 may receive time information from 
time module 330 and/or access time information associated 
with content item 302, and send or pass this time informa 
tion to weather module 345, as discussed elsewhere herein, 
to retrieve weather information relevant to the time repre 
sented in the time information. It should be understood that 
metadata-injection module 300 may retrieve and send both 
the location information and time information to weather 
module 345 in order to retrieve weather information relevant 
to both the time and location represented in this information. 

In an embodiment, metadata-injection module 300 may 
receive location information from location module 335, and 
send or pass this location information to news module 350, 
as discussed elsewhere herein, to retrieve news information 
relevant to the location represented in the location informa 
tion. Additionally or alternatively, metadata-injection mod 
ule 300 may receive time information from time module 330 
and/or access time information associated with content item 
302, and send or pass this time information to news module 
350, as discussed elsewhere herein, to retrieve news infor 
mation relevant to the time represented in the time infor 
mation. It should be understood that metadata-injection 
module 300 may retrieve and send both the location infor 
mation and time information to news module 350 in order to 
retrieve news information relevant to both the time and 
location represented in this information. 

In an embodiment, metadata-injection module 300 may 
receive object information from object-recognition module 
320, and send or pass this object information to AIDC 
module 365, as discussed above, to retrieve AIDC informa 
tion relevant to an object (e.g., barcode, QR code, etc.) 
represented in the object information. 

In an embodiment, metadata-injection module 300 may 
receive an asset identifier identifying a person or object 
from, for example, one or more of audio-to-text module 310 
(e.g., an asset identifier spoken into a microphone), author 
ship module 315 (e.g., an identifier of the author associated 
with an authenticated account), object-recognition module 
320 (e.g., which may convert a visual depiction of an asset 
identifier in an image into text, for example, via OCR), user 
interface 325 (e.g., an asset identifier manually input by a 
user), location module 335 (e.g., an asset identifier associ 
ated in a locations database with location information asso 
ciated with content item 302), scheduling module 340 (e.g., 
an asset identifier in event details associated in event infor 
mation with a time period relevant to content item 302), 
news module 350 (e.g., an asset identifier mentioned in a 
news feed), sensor(s) 355 (e.g., an asset identifier received 
in the output of a sensor), closed-captions module 360 (e.g., 
an asset identifier included in closed captions associated 
with content item 302), AIDC module 365 (e.g., an asset 
identifier decoded or received from a barcode, QR code, 
RFID tag, magnetic stripe, Smart card, OCR, etc.), and 
contacts module (e.g., an identifier of a contact). Metadata 
injection module 300 may send or pass this asset identifier 
to asset module 375, as discussed elsewhere herein, to 
retrieve asset information associated with the asset identifier. 

In an embodiment, metadata-injection module 300 may 
receive scheduling information for a relevant time period 
(e.g., encompassing the creation time of content item 302) 
from scheduling module 340 which identifies one or more of 
the other metadata sources (e.g., any of metadata sources 
310–335 and 345-390). In this embodiment, metadata-injec 

10 

15 

25 

30 

35 

40 

45 

50 

55 

60 

65 

42 
tion module 300 may retrieve metadata from the metadata 
source(s) identified in the scheduling information for the 
relevant time period. 

1.2.4. Operation 
In an embodiment, third-party application 250 may initi 

ate communication with metadata-injection module 300, 
implemented using metadata SDK 210 or provided by 
metadata SDK 210. Third-party application 250 may be a 
client application, Such as application 132, executing on a 
user system 130, and may send or pass a content item 302 
to metadata-injection module 300. Third-party application 
250 may be an application for capturing or otherwise 
generating content item 302, and/or may be an application 
which manages (e.g., loads, manipulates, edits, etc.) previ 
ously-generated content items 302. 

Metadata-injection module 300 may be locally executed 
on user system 130, and may be incorporated into third-party 
application 250 or separate from third-party application 250. 
Alternatively, metadata-injection module 300 may be 
executed on a remote system, such as metadata server 110. 
and third-party application 250 may send content item 302 
to metadata-injection module 300 executing on metadata 
server 110 over network(s) 120. 

In an embodiment, metadata-injection module 300 
receives content item 302 from third-party application 250, 
and injects appropriate metadata, such as location informa 
tion (e.g., GPS information), event information (e.g., from 
an appointment book or calendar), weather information 
(e.g., from a weather service), news information (e.g., from 
a news service), custom information (e.g., from a custom 
third-party service), etc., as described elsewhere herein. 
Specifically, metadata-injection module 300 may aggregate 
the metadata from one or more (including potentially all) of 
metadata sources 220 (e.g., metadata sources 310-390), 
which may be local (e.g., on the same device) and/or remote 
(e.g., over network(s) 120) to metadata-injection module 
3OO. 

Content item 302 sent or passed from third-party appli 
cation 250 to metadata-injection module 300 may be 
included in a request that specifies or otherwise identifies 
one or more metadata sources from which metadata should 
be aggregated and/or includes other parameters. In this case, 
metadata-injection module 300 may parse the request, and 
retrieve the metadata from each of the one or more metadata 
Sources identified in the request. In this case, the determi 
nation of which metadata sources to use may be based on a 
user setting which may be set, for example, via one or more 
user interfaces of third-party application 250 or a system or 
programmatic setting which may be set, for example, by the 
third-party developer of third-party application 250. In this 
manner, a user or third-party developer could specify the 
metadata sources 220 to be used by metadata-injection 
module 300. 

Alternatively, metadata-injection module 300 may other 
wise determine from which of metadata sources 220 to 
retrieve metadata. As discussed elsewhere herein, this deter 
mination may be based, at least in part, on the type of content 
item 302 (e.g., photograph, video, etc.). For example, meta 
data-injection module 300 may query a table or other data 
structure using the content item type to retrieve a Subset of 
available metadata sources which are applicable to the 
content item type. Alternatively, metadata-injection module 
300 may simply attempt to retrieve metadata from all 
available metadata sources. 
As another alternative, this determination of metadata 

Sources may be based on Scheduling information received 
from scheduling module 340. In such an embodiment, 



US 9,715,506 B2 
43 

metadata-injection module 300 may always retrieve sched 
uling information relevant to content item 302 (e.g., Sched 
uling information comprising a time period encompassing a 
creation time of content item 302) from scheduling module 
340, and select additional metadata sources based on which 
metadata sources are identified in the scheduling informa 
tion. In this manner, metadata Sources may be scheduled. 
That is, the metadata sources to be used for metadata 
injection may be defined by a user for a particular time 
period in advance of that time period. In addition, the request 
may comprise other parameters. 

Regardless of how the metadata sources to be used are 
identified or determined or if all available metadata sources 
are utilized, metadata-injection module 300 retrieves the 
metadata (e.g., from local sources, and/or from remote 
sources, for example, over network(s) 120) from each of the 
determined metadata source(s) and injects the retrieved 
metadata into, or otherwise associates the retrieved metadata 
with, the received content item. Specifically, as described in 
more detail elsewhere herein, metadata-injection module 
300 may embed the retrieved metadata into metadata fields 
of content item 302 incorporate the retrieved metadata into 
a sidecar file associated with content item 302, and/or 
generate a composite content item comprising both content 
item 302 and a visual depiction of metadata (e.g., an image 
returned as metadata). 
Once the metadata, retrieved from one or more metadata 

sources 220, have been injected into the content item, 
received from third-party application 250, metadata-injec 
tion module 300 may return the metadata-injected content 
item 304 to third-party application 250. Alternatively or 
additionally, metadata-injection module 300 may notify 
third-party application 250 (e.g., via a response to the 
request) that the metadata injection has been Successful, 
and/or send metadata-injected content item 304 to metadata 
server(s) 110 for storage in one or more storage destinations 
230. Whether metadata-injection module 300 returns meta 
data-injected content item 304 to third-party application 
250, stores metadata-injected content item 304 in a storage 
destination 230 (e.g., in cloud storage), or does both may be 
a system setting defined by third-party application 250 
and/or a user setting provided by third-party application 250 
which a user may specify (e.g., via one or more user 
interfaces displayed on a display by third-party application 
250). 

Alternatively or additionally, once the metadata has been 
injected into the content item, metadata-injection module 
300 may send or pass the metadata-injected content item 
304, directly or indirectly, to a media production or editing 
application (e.g., application(s) within Adobe Creative 
SuiteTM or Adobe Creative CloudTM, application(s) within 
Avid Artist SuiteTM Apple FinalCut ProTM, etc.). The media 
production or editing application may be local to metadata 
injection module 300 (e.g., executing on the same user 
system 130). Alternatively, the media production or editing 
application may be remote from metadata-injection module 
300 (e.g., executing on a different system), in which case 
metadata-injection module 300 may send the metadata 
injected content item 304 to the media production or editing 
application over network(s) 120. In either case, metadata 
injection module may utilize an API to send the metadata 
injected content item 304 to the media production or editing 
application, or may pass the metadata-injected content item 
304 to an intermediate module (e.g., a module of third-party 
application 250) which utilizes an API to send the metadata 
injected content item 304 to the media production or editing 
application. In the above manner, the metadata-injected 

10 

15 

25 

30 

35 

40 

45 

50 

55 

60 

65 

44 
content item 304 may be automatically (e.g., without user 
intervention) or semi-automatically (e.g., in response to a 
user confirmation) imported into a media production or 
editing application. The media production or editing appli 
cation may allow a user, for example, to edit the metadata 
injected content item 304 (e.g., crop, apply filters or effects, 
alter attributes, change content, etc.), incorporate at least a 
portion of the metadata-injected content item 304 into 
another content item, combine at least a portion of the 
metadata-injected content item 304 with one or more other 
content items, publish the metadata-injected content item 
304, and/or the like. 

In an embodiment in which metadata-injected content 
item 304 is sent by metadata-injection module 300 to 
metadata server(s) 110 for storage, metadata server(s) 110 
may send the metadata-injected content item to one or more 
storage destinations 230, which may be comprised in meta 
data server(s) 110 or remotely accessible to metadata 
server(s) 110 (e.g., via network(s) 120). Metadata server(s) 
110 may select the storage destination(s) to which the 
metadata-injected content item is sent to be stored based on 
a system setting and/or user setting. Alternatively or addi 
tionally, the storage destination(s) may be specified or 
otherwise identified in the request, comprising metadata 
injected content item 304, that is sent by metadata-injection 
module 300 to metadata server(s) 110. In this case, a user 
may specify the storage destination(s) to which metadata 
injected content item 304 is sent to be stored (e.g., via one 
or more user interfaces displayed on a display by third-party 
application 250). 

In any case, metadata server(s) 110 may optionally send 
a notification that metadata-injected content item 304 has 
been successfully stored. As illustrated in FIG. 2, this 
notification may be sent by metadata serve?s) 110 to a 
third-party platform 240 that supports third-party applica 
tion 250. However, it should be understood that alternatively 
or additionally, this notification may be sent by metadata 
server(s) 110 to third-party application 250 either directly 
(e.g., via network(s) 120) or indirectly (e.g., by sending it to 
metadata-injection module 300, which in turn returns it to 
third-party application 250), and/or any other recipient. 

Additionally or alternatively, in an embodiment, after a 
metadata-injected content item 304 has been received and/or 
stored by metadata server(s) 110, metadata server(s) 110 
may push real-time metadata to third-party platform 240, in 
addition to or instead of sending a notification to third-party 
platform 240. Third-party platform 240 may utilize this 
metadata to provide improved searching capabilities for 
content items. For example, third-party platform 240 may 
store and organize the received metadata for each metadata 
injected content item 304 (e.g., associated with a particular 
user) either on third-party platform 240 (or remote storage 
accessible to third-party platform 240) or at the user system 
executing third-party application 250. Such that the metadata 
is associated with the content item (e.g., via an identifier of 
the content item) into which it was injected, and can be 
searched. Thus, a user, when searching for a particular 
content item, may enter a query (e.g., one or more key 
words), and either third-party application 250 or third-party 
platform 240 supporting the third-party application 250 may 
search the stored metadatabased on the query and return one 
or more content items associated with matching metadata 
(e.g., metadata comprising the one or more keywords of a 
query). 
An example of how a third-party application (e.g., third 

party application 250) may utilize the metadata SDK (e.g., 
metadata SDK 210) will now be described, according to an 



US 9,715,506 B2 
45 

embodiment. A third-party developer may develop a third 
party client application (e.g., third-party application 250 or 
application 132 executing on user system 130) which 
obtains content items. Client application 250 may capture 
the content item, and/or may simply receive the content item 
(e.g., from a capture device, from a scanning device, from 
another application, by user selection, etc.). For example, 
the client application may be interfaced with a camera of a 
user system (e.g., a camera of a Smartphone, a webcam of a 
laptop computer, etc.) to capture a photograph or video (e.g., 
in response to a user input via a hard or Soft key). After the 
content item has been captured, the client application may 
initiate a call to an internal procedure that implements a 
metadata-injection module (e.g., class) specified by the 
metadata SDK or incorporates a metadata-injection module 
(e.g., library) provided by metadata SDK, or may initiate a 
remote procedure call to a metadata-injection module (e.g., 
executing on metadata server(s) 110). 
The content item (e.g., content item 302) may be sent to 

the metadata-injection module (e.g., metadata-injection 
module 300) automatically whenever a content item has 
been captured via the client application, semi-automatically 
in response to user confirmation to a prompt that is presented 
to the user whenever a content item has been captured via 
the client application, and/or manually in response to a user 
input (e.g., via a hard or Soft key at any time after the content 
item has been captured). The client application may imple 
ment the decision of when the captured content item is sent 
to the metadata-injection module as a user setting, Such that 
a user may specify whether content items, captured via the 
client application, should be sent automatically, semi-auto 
matically, or manually (e.g., via one or more user interfaces 
generated by the client application on a display of the user 
system). It should be understood that a plurality of content 
items may be sent to the metadata-injection module (e.g., 
metadata-injection module 300) to be injected with metadata 
in a batch process. The systems and processes may be the 
same as for a single content item (e.g., content item 302), but 
applied to multiple content items. 

Continuing the example, the metadata-injection module 
(whether local or remote) receives the captured photograph 
from the client application and may inspect all available 
Sources. Alternatively, the metadata-injection module may 
inspect a Subset of the available sources—for example, 
corresponding to sources identified in the request sent by or 
invoked by the client application and comprising the cap 
tured photograph, or corresponding to sources that are 
relevant to photographs—to identify whether those sources 
have available metadata. As a non-limiting example, the 
metadata-injection module may check one or more other 
applications (e.g., a calendar or contact application associ 
ated with the user of the client application, and/or executing 
on the same user system on which the client application is 
executing), a GPS (within the user system on which the 
client application is executing), and/or additional sensors 
integral, interfaced, and/or communicatively connected with 
the user system on which the client application is executing. 
The metadata-injection module collects metadata from these 
Sources, and "injects them into the content item (e.g., by 
inserting the metadata into embedded metadata fields of the 
content item or a sidecar file associated with the content 
item, or generating a composite content item). The meta 
data-injection module may then return this metadata-in 
jected content item to the client application. Alternatively or 
additionally, the metadata-injection module may upload the 
metadata-injected content item to a server (e.g., metadata 
server(s) 110) for storage. In this case, the server stores the 

10 

15 

25 

30 

35 

40 

45 

50 

55 

60 

65 

46 
metadata-injected content item and may notify an external 
platform (e.g., third-party platform 240), that Supports the 
client application, that the content item has been stored. In 
addition, the server may provide all the metadata that has 
been injected into the content item to the external platform 
Supporting the client application. 
The external platform may utilize this metadata to provide 

improved searching capabilities for content items. For 
example, the external platform may store and organize the 
received metadata for each metadata-injected content item 
(e.g., associated with a particular user) either on the external 
platform or at the user system executing the client applica 
tion, such that the metadata is associated with the content 
item (e.g., via an identifier of the content item) into which 
it was injected, and can be searched. Thus, a user, when 
searching for a particular content item, may enter a query 
(e.g., one or more keywords), and either the client applica 
tion or the external platform Supporting that client applica 
tion may search the stored metadatabased on the query and 
return one or more content items associated with matching 
metadata (e.g., metadata comprising the one or more key 
words of a query). 

2. Process Overview 
Embodiments of process(es), which may be implemented 

by the above described system(s), will now be described in 
detail. It should be understood that the described process(es) 
may be embodied in one or more software modules that are 
executed by one or more hardware processors. The 
described process may be implemented as instructions rep 
resented in source code, object code, and/or machine code. 
These instructions may be executed directly by the hardware 
processor(s), or alternatively, may be executed by a virtual 
machine operating between the object code and the hard 
ware processors. In addition, the disclosed module(s) may 
be built upon or interfaced with one or more existing 
systems. Furthermore, the software modules may be inte 
grated in a stand-alone application, an extension of another 
application, or integrated into an operating system. Alterna 
tively, the process(es) may be embodied in hardware com 
ponents, such as in an embedded system or integrated circuit 
(IC), or a combination of Software and hardware compo 
nents. Accordingly, as used herein, the term "module' 
should be interpreted as contemplating a software module, a 
hardware module, and a module comprising a combination 
of software and hardware. Furthermore, the term "module' 
or “modules,” whether used in the singular or plural form 
should be interpreted as encompassing both a single module 
and, alternatively, a plurality of modules. 

In an embodiment, the disclosed processes for adding 
descriptive metadata to content items are implemented as 
Software modules that are executed entirely on user system 
130, entirely on server(s) 110, or distributed between user 
system 130 and server(s) 110 (e.g., some modules executed 
on user system 130, as application 132, and some modules 
executed on server(s) 110). 

2.1. Metadata Injection 
FIG. 4 illustrates a high-level flow diagram for a process 

400 of injecting metadata into a content item, according to 
an embodiment. Process 400 may be implemented by meta 
data-injection module 300 described herein. This metadata 
injection module may be a software module that is specified 
in an API of metadata SDK 210, implemented by a third 
party developer, and incorporated in third-party application 
250. Alternatively, the metadata-injection module may be 
provided as a pre-written library of metadata SDK 210 that 
is accessible via a specified procedure call and/or executed 
by metadata server 110, such that third-party application 250 



US 9,715,506 B2 
47 

may call the metadata-injection module (e.g., passing the 
content item, possibly with one or more parameters, to the 
metadata-injection module) either locally on a user system 
130 (if the metadata-injection module is locally executed) or 
remotely on metadata server 110 (e.g., via a remote proce 
dure call over network(s) 120 if the metadata-injection 
module is remotely executed). 

Process 400 begins in step 410, when a content item is 
received. The content item may be received in a request or 
procedure call along with one or more parameters or other 
data, Such as an identification of the type of content item, an 
identification of one or more metadata sources (e.g., meta 
data sources 220) to be used, one or more storage destina 
tions (e.g., storage destinations 230) to which the content 
item should be sent following the metadata injection, etc. 

In step 420, metadata source(s) (e.g., metadata sources 
220, 310-390) are determined. In an embodiment in which 
metadata sources are identified in the request that is received 
in step 410, this determination simply comprises accessing 
those identifications of the metadata sources. 

Additionally or alternatively, the metadata sources may be 
determined in step 420 based, at least in part, on the type of 
the content item (e.g., image, video, etc.). The type of the 
content item may be identified in the request that is received 
in step 410, in which case the type of the content item may 
be determined by simply accessing that parameter from the 
request. Alternatively, the type of the content item may be 
determined by analyzing the content item. In either case, 
process 400 may select one or more metadata sources that 
are associated with the determined type of the content item. 
For example, process 400 may access a table or other data 
structure which associates each available metadata source 
(e.g., each metadata source 220, 310-390) with one or more 
content item types. This data structure may be searched 
based on the determined content item type to identify a 
Subset of the available metadata sources which are associ 
ated with the determined content item type. This subset of 
available metadata source(s) are the determined metadata 
Source(s) that are used in the Subsequent steps of process 
400. 

Additionally or alternatively, the metadata sources may be 
determined in step 420 based, at least in part, on Scheduling 
information, as described elsewhere herein. For instance, 
process 400 may retrieve Scheduling information (e.g., from 
scheduling module 340) relevant to a time of creation of the 
content item received in step 410. This scheduling informa 
tion may identify the metadata source(s) to be used. There 
fore, the determination of metadata source(s) in step 420 
may comprise parsing the scheduling information to identify 
these metadata source(s). 

In steps 430 and 440, each of the metadata source(s) 
determined in step 420 is checked. Specifically, in step 430, 
it is determined whether any of the metadata source(s) 
determined in step 420 remain to be checked. If so (i.e., 
“Yes” in step 430), in step 440, the next metadata source 
(e.g., identified in an array or linked list of metadata sources 
generated in Step 420) is checked. Checking a metadata 
Source in step 440 may comprise sending a request for 
metadata to the metadata source and receiving a response to 
the request comprising the requested metadata, receiving 
real-time metadata from the metadata source, retrieving 
metadata previously received from the metadata source 
(e.g., previously requested and received on a periodic basis, 
previously pushed from the metadata source, etc.), etc. 
Once metadata has been retrieved from each metadata 

source determined in step 420 (i.e., “No” in step 430), the 
retrieved metadata from all of these metadata sources are 

10 

15 

25 

30 

35 

40 

45 

50 

55 

60 

65 

48 
injected into, or otherwise associated with, the content item 
that was received in step 410. Alternatively, retrieved meta 
data from each metadata Source may be injected into the 
content item as it is retrieved (e.g., after step 440 or in 
parallel with the loop formed by steps 430 and 440). In either 
case, the retrieved metadata may be analyzed or otherwise 
processed before it is associated with the received content 
item. 

This processing may comprise deriving the metadata to be 
associated with the received content item from the metadata 
that is retrieved from the metadata source(s) in step 440. In 
other words, the data retrieved from these metadata 
Source(s) may be processed into the metadata to be injected 
or otherwise associated with the received content item. This 
processing may comprise, for example, parsing or extracting 
the metadata from the data retrieved in step 440 (e.g., 
extracting text from fields of the retrieved data), formatting 
the data retrieved in step 440 into the metadata, or otherwise 
transforming or converting the data retrieved in Step 440 into 
metadata for the content item. 

2.2. Metadata Scheduling 
FIG. 5 illustrates a process 500 for associating scheduled 

metadata with content item(s), according to an embodiment. 
Process 500 may be implemented by metadata-injection 
module 300, scheduling module 340, and/or a combination 
of metadata-injection module 300 and scheduling module 
340. Process 500 begins in step 510, when a content item 
(e.g., content item 302) is received (e.g., by metadata 
injection module 300). 

In step 520, time data (e.g., timestamp) associated with 
the content item is compared to one or more time periods in 
scheduling information. This comparison may be performed 
by scheduling module 340 in response to a request that 
comprises the time data, or may be performed by metadata 
injection module 300 after receiving scheduling information 
from scheduling module 340, as discussed elsewhere herein. 
In either case, the comparison may comprise comparing a 
timestamp associated with the content item (T) to a time 
range associated with one or more events in the scheduling 
information. For example, the time range may comprise a 
start timestamp (T,), an end timestamp (T), or both a start 
and end timestamp. If the time range comprises a start 
timestamp only, the timestamp associated with the content 
item is encompassed by the time range if it is Subsequent to 
the start timestamp, i.e., TaT. If the time range comprises 
an end timestamp only, the timestamp associated with the 
content item is encompassed by the time range if it precedes 
the end timestamp, i.e., TsT. If the time range comprises 
both a start timestamp and an end timestamp, the timestamp 
associated with the content item is encompassed by the time 
range if it is between the start and end timestamps, i.e., 
TsTsT. 

If the time data is not encompassed by one or more time 
periods in the scheduling information (i.e., “No” in step 
520), no metadata is generated from the scheduling infor 
mation, and process 500 waits to receive another content 
item. It should be understood that, even though no metadata 
is generated from the scheduling information, this does not 
preclude the possibility of generating metadata from other 
metadata sources. 
On the other hand, if the time data is encompassed by one 

or more time periods in the scheduling information (i.e., 
“Yes” in step 520), metadata is generated from the associ 
ated Scheduling information in step 530 (e.g., by metadata 
injection module 300 or scheduling module 340). Alterna 
tively, the generation of metadata in step 530 may be 
performed in advance of step 520 and/or step 510. In this 



US 9,715,506 B2 
49 

case, metadata may be generated for all available scheduling 
information, and the pre-generated metadata may be asso 
ciated with content items based on a comparison of a 
timestamp, related to a content item received in step 510, 
with a time period associated with scheduling information 
from which the metadata was previously generated or asso 
ciated with the pre-generated metadata itself. 

In either case, metadata may be generated from the 
scheduling information by extracting one or more words or 
character strings from text in one or more fields of the 
scheduling information, and/or by using a character string 
stored in a specific, dedicated metadata field of the sched 
uling information (e.g., a description field). The scheduling 
information may comprise event information with one or 
more event details and one or more parameters (e.g., start 
and end timestamps) defining a time period. As an example, 
for an event represented in the scheduling information with 
a description of “Lunch with John Smith, the character 
strings "Lunch” and “John Smith’ may be extracted as 
metadata. Also, as described elsewhere herein, metadata 
generated from nested events represented in the scheduling 
information may be concatenated or otherwise combined for 
injection into the content item received in step 510 (e.g., 
content item 302). For example, if the scheduling informa 
tion comprises a first event of “Meeting with John Smith' 
from 10:00am to 2:00 pm and a second event of “Lunch at 
ABC Restaurant” from 12:00 pm to 1:00 pm on the same 
day, the second event is nested within the first event. Thus, 
the metadata generated in step 530 for a content item with 
a timestamp representing 12:30 pm on the same day may 
include both event descriptions or character string(s) 
extracted from both event descriptions (e.g., “John Smith', 
“Lunch', and “ABC Restaurant”). 

In step 540, the relevant metadata generated in step 530 
is associated with the content item received in step 510, and 
process 500 ends. As discussed elsewhere herein the meta 
data may be embedded into metatags or other fields of the 
content item, added to a sidecar file associated with the 
content item, and or used to generate a composite content 
item. 

2.3. Metadata Aggregation 
FIG. 6 illustrates a process 600 for aggregating metadata 

from multiple metadata sources (e.g., metadata sources 220, 
310-390), according to an embodiment. This process may be 
implemented, for example, by metadata-injection module 
300. Process 600 is similar to process 400. However, process 
600 illustrates the potential relationships between multiple 
metadata sources. Steps 610, 620, 630, 640, and 650 in 
process 600 may be identical or similar to steps 410, 420, 
430, 440, and 450, respectively, in process 400. Therefore 
any descriptions of steps 410, 420, 430, 440, and 450 may 
apply equally to steps 610, 620, 630, 640, and 650, respec 
tively, and vice versa. 

Process 600 starts in step 610, in which a content item is 
received. In step 620, one or more metadata Sources are 
determined, for example, based on the type of content item 
received in step 610 and/or one or more parameters received 
with the content item(s) in step 610, or based on scheduling 
information. Alternatively, all metadata sources may be 
consulted, regardless of the type of content item received in 
step 610 and any parameters, in which case step 620 may be 
unnecessary and omitted. 

In step 630, if metadata source(s) remain to be checked 
from the metadata source(s) determined in step 620 (i.e., 
“Yes” in step 630), process 600 proceeds to step 640. 
Otherwise (i.e., “No” in step 630), process 600 proceeds to 
step 650, in which all acquired metadata is associated with 

10 

15 

25 

30 

35 

40 

45 

50 

55 

60 

65 

50 
the content item(s) received in step 610, and process 600 
ends. However, it should be understood that step 650 may 
occur in parallel or interspersed with the other steps (e.g., 
after steps 640 and/or 670), such that metadata is associated 
with the content item(s) received in step 610 as that metadata 
is acquired. In addition, as discussed elsewhere herein, at 
least a portion of the metadata may be associated with the 
content item(s) by generating a visual depiction of the 
metadata, and generating a composite content item (e.g., 
composite image) comprising each of the content item(s) 
(which may be a plurality of content items) and the visual 
depiction of the metadata. It should be understood that 
metadata (e.g., any remaining non-visually-depicted meta 
data) may also be associated with the composite image using 
embedded fields or a side car file. 

In step 640, metadata is acquired (e.g., in a manner 
discussed elsewhere herein) from the next metadata source 
in the set of metadata source(s) determined in step 620. 

In step 660, process 600 determines whether or not the 
metadata acquired in step 640 comprises one or more inputs 
which can be used to acquire additional metadata from one 
or more additional metadata sources. For example, metadata 
acquired from one metadata source and comprising first 
contact information (e.g., name(s), title, employer, relation 
ship, telephone number(s), email address(es), Street address 
(es), etc.) may be input to contacts module 370 to acquire 
second contact information based on the first contact infor 
mation, as discussed elsewhere herein. As another example, 
location information acquired from location module 335 
may be input to object-recognition module 320 to facilitate 
object recognition by restricting searching based on the 
location information. 

If the metadata acquired in step 640 does comprise 
input(s) which can be used to acquire additional metadata 
from one or more additional metadata source(s) (i.e., “Yes” 
in step 660), process 600 proceeds to step 670. Otherwise 
(i.e., “No” in step 660), process 600 returns to step 630. In 
step 670, metadata is acquired (e.g., in the manner discussed 
elsewhere herein) from the additional metadata source(s) 
using one or more of the input(s) as an input to the respective 
metadata source. Then, process 600 returns to step 630. 

2.4. Scheduled Metadata Sources 
FIG. 7 illustrates a process 700 for scheduling metadata 

sources (e.g., metadata sources 220,310–335 and 345-390), 
according to an embodiment. Process 700 may correspond 
to step 420 in process 400 and/or step 620 in process 600. 

Process 700 starts in step 710, in which a content item is 
received. In step 720, time data (e.g., timestamp) associated 
with the content item is compared to one or more time 
periods in scheduling information. This comparison may be 
performed by scheduling module 340 in response to a 
request that comprises the time data, or may be performed 
by metadata-injection module 300 after receiving schedul 
ing information from scheduling module 340, as discussed 
elsewhere herein. In either case, the comparison may com 
prise comparing a timestamp associated with the content 
item (T) to a time range associated with one or more events 
in the scheduling information. For example, the time range 
may comprise a start timestamp (T,), an end timestamp (T), 
or both a start and end timestamp. If the time range com 
prises a start timestamp only, the timestamp associated with 
the content item is encompassed by the time range if it is 
Subsequent to the start timestamp, i.e., TaT. If the time 
range comprises an end timestamp only, the timestamp 
associated with the content item is encompassed by the time 
range if it precedes the end timestamp, i.e., TsT. If the time 
range comprises both a start timestamp and an end time 



US 9,715,506 B2 
51 

stamp, the timestamp associated with the content item is 
encompassed by the time range if it is between the start and 
end timestamps, i.e., TsTsT. 

If the time data is not encompassed by one or more time 
periods in the scheduling information (i.e., “No” in step 5 
720), no metadata sources are determined. In this case, no 
metadata may be injected into the content item received in 
710. Alternatively, there may be a default set of metadata 
Sources which are used for metadata injection, and/or there 
may be a fixed set of metadata sources that are always used 10 
for metadata injection. For example, in steps 420 and/or 620 
of processes 400 and/or 600, respectively, if no scheduling 
information applies to the time associated with the content 
item or the applicable scheduling information does not 
identify any metadata sources, the respective process may 15 
proceed using this default and/or fixed set of metadata 
SOUCS. 

On the other hand, if the time data is encompassed by one 
or more time periods in the scheduling information (i.e., 
“Yes” in step 720), the metadata sources to be used for 20 
metadata-injection (e.g., by metadata-injection module 300) 
are determined from the associated Scheduling information 
in step 730. 

3. Metadata Injection 
As discussed elsewhere herein, metadata injection, as 25 

described herein, generally refers to the association of 
metadata with a content item. This association may comprise 
incorporating (e.g., embedding) the metadata into the con 
tent item, incorporating the metadata into a sidecar file 
associated with the content item, and/or generating a com- 30 
posite content item. 

In an embodiment in which metadata is embedded into a 
content item, the content item may comprise metadata fields, 
provided according to a standard (e.g., EXIF, IIM, XMP, 
etc.). Thus, the metadata-injection module (e.g., metadata- 35 
injection module 300) may input metadata into the corre 
sponding metadata fields provided by the standard. 

However, these standards do not generally anticipate the 
multiplicity of descriptive metadata enabled by the disclosed 
metadata-injection module, and frequently only provide 40 
embedded fields for technical metadata. Thus, in an embodi 
ment, the metadata-injection module may “abuse the 
embedded fields provided by such standards by inputting 
metadata that was not intended for a particular field into the 
field. 45 

In Such an embodiment, the metadata-injection module 
(e.g., metadata-injection module 300) or the third-party 
application (e.g., third-party application 250) may maintain 
a mapping of types of metadata to standard fields for each 
supported standard. In an embodiment in which the third- 50 
party application maintains this mapping, third-party appli 
cation 250 may send or pass the mapping to the metadata 
injection module (e.g., along with the content item) to be 
used by the metadata-injection module during the injection 
of metadata into the content item. It should be understood 55 
that different third-party applications or different implemen 
tations of the metadata-injection module may use the same 
or different mappings, and/or may modify their respective 
mappings over time or allow users to modify the mappings 
(e.g., according to user settings). 60 

In an embodiment, the metadata-to-field mapping com 
prises a plurality of associations that associate a type of 
metadata with a field of a Supported Standard. The mapping 
may provide Such associations for a plurality of standards, 
and may provide the associations for at least a Subset of 65 
fields in each of the plurality of standards. As an example, 
the mapping may be represented or expressed as a table 

52 
which comprises rows for each Supported Standard, as 
illustrated in the following table: 

Standard Field Metadata Type 

1 EXIF Make Weather1 
EXIF Model Weather2 

3 EXIF Description ClosedCaptions 

50 IPTC By-Line Authorship 
51 IPTC By-Line Title Weather 
52 IPTC Contact Contacts 

In an embodiment, the metadata-to-field mapping may 
only store associations for those fields that are being abused, 
i.e., not being used according to their intended purpose. In 
other words, fields which are to be used by the metadata 
injection module according to their intended purpose or 
which are not used by the metadata-injection module may 
not be represented in the mapping. Also, as illustrated by 
lines 1 and 2 in the above table, metadata of a single type 
may be split across multiple fields, for example, if one field 
is not sufficient for the expected volume of metadata of that 
type. 
When inputting metadata into the embedded fields of each 

content item that utilizes one of these standards, the meta 
data-injection module may, for each metadata type (e.g., 
authorship, location, events, weather, news, sensor output, 
AIDC, contacts, assets, etc.), consult the metadata-to-field 
mapping to determine the field into which the metadata of 
that type should be input, and input the metadata accord 
ingly. 

In an embodiment in which the metadata-to-field mapping 
is maintained by the third-party application (e.g., third-party 
application 250), a reverse mapping (i.e., a field-to-metadata 
mapping) can be used to translate embedded fields back into 
the appropriate type of metadata. This field-to-metadata 
mapping may use the same data structure as the metadata 
to-field mapping, and may be maintained at the third-party 
application or a third-party platform (e.g., third-party plat 
form 240) Supporting the third-party application. 
The field-to-metadata mapping can be used for the pur 

poses of searching or filtering content items based on the 
type of metadata. For example, a user interface provided by 
the third-party application or third-party platform may allow 
a user to specify one or more metadata types on which to 
search and/or filter stored metadata-injected content items. 
The third-party application or third-party platform may 
consult the field-to-metadata mapping to determine on 
which fields to search or filter. Using the above example, if 
the user specifies a search for "sunny' in the weather 
metadata, the search mechanism may search the "Make' and 
“Model fields of any EXIF-based content items and search 
the “By-Line Title” field of any IPTC-based content items 
for the term "sunny,' and return any matching content items 
in response to the search. 

In an embodiment, the metadata-injection module (e.g., 
metadata-injection module 300) may inject metadata into 
content items (e.g., content item 302) according to a tax 
onomy. For example, as discussed above, the metadata 
injection module may map a predefined taxonomy to the 
fields of a preexisting standard (e.g., EXIF, IPTC, etc.). As 
an illustration, a taxonomy for animals may map a genus to 
one predefined field of the standard, a species to another 
predefined field of the standard, etc. It should be understood 
that any taxonomy may be mapped in this manner, i.e., as a 



US 9,715,506 B2 
53 

plurality of associations that each represent a pairing of a 
field within the taxonomy with a predefined field of the 
standard. These associations may be defined arbitrarily or 
may take into account the fields of the standard (e.g., making 
sure that the data type of the field of the taxonomy is the 
same as the data type of the predefined field in the standard). 

Additionally or alternatively, the metadata-injection mod 
ule may inject a predefined taxonomy value as metadata into 
a content item. The taxonomy value may identify a classi 
fication, related to the content item, from a predefined 
hierarchy defined by a given taxonomy. For example, a 
taxonomy for animals may include a particular value (e.g., 
a number) for a particular dog breed. The metadata-injection 
module may inject this taxonomy value, representing the 
dog breed, as metadata into a metadata field embedded in or 
otherwise associated with a photograph of a dog of that 
particular dog breed. 

Non-limiting examples of various taxonomies that may be 
used with the metadata-injection module are provided by 
WAND, Inc. of Denver Colo., and are described at wand 
inc.com/taxonomies.aspx. These taxonomies may include, 
for example, taxonomies for accounting, automotive parts 
and equipment, banking, building and construction manage 
ment, customer service, drug development, electric and gas 
utility, engineering, environmental, finance and investment, 
fire department, food and beverage, food service equipment 
and Supplies, general business, higher education, human 
resources, industrial equipment and Supplies, information 
technology, insurance, intellectual property, K-12, legal, life 
insurance, local government, logistics, manufacturing, 
medical administration, medical condition and specialties, 
medical equipment and Supplies, mining, news, non-profit, 
oil and gas, personal care products, police department, 
procurement, product and service, project management, 
property and casualty insurance, real estate, records reten 
tion, retail, sales and marketing, scientific and technical 
equipment, sensory, sentiment, skills, telecommunications, 
wastewater, and/or water utility. 
As with metadata Sources 220, the taxonomy or taxono 

mies used by metadata-injection module 300 may be exten 
sible. In other words, each taxonomy utilized by metadata 
injection module 300 may be represented as a discrete 
module that may be added to or removed from metadata 
injection module 300 according to the particular design 
goals. Alternatively or additionally, the taxonomy to be used 
may be passed as a parameter (e.g., comprising or identify 
ing the taxonomy) to metadata-injection module 300. Thus, 
each third-party developer could utilize a different taxonomy 
for their particular implementation or use of metadata 
injection module 300, including third-party taxonomies. 
A few examples of how taxonomies will now be described 

in greater detail. As a first example, a user could use his or 
her mobile user system 130 to take a photograph of a dog. 
This photograph may be received by metadata-injection 
module 300 as content item 302. Metadata-injection module 
300 may pass the photograph to object-recognition module 
320, which may match the dog in the photograph to an object 
model in reference database 392. The matched object model 
may be associated with a particular value (character string of 
numbers and/or letters) for an animal taxonomy. This par 
ticular value may represent or otherwise identify the breed 
of the dog, as well as implicitly or explicitly identifying the 
particular animal class (e.g., mammal), family (e.g., cani 
dae), and/or the like. Object-recognition module 320 may 
return this taxonomy value to metadata-injection module 
300, which may inject the returned taxonomy value or data 
derived from the returned taxonomy value (e.g., a name of 

10 

15 

25 

30 

35 

40 

45 

50 

55 

60 

65 

54 
the breed derived from a lookup performed by metadata 
injection module 300 on a metadata source 220 using the 
returned taxonomy value) into a field in the metadata of the 
photograph. As discussed elsewhere herein, this metadata 
field may be predefined by the format standard of the 
photograph as a taxonomy field or mapped by metadata 
injection module 300 as a taxonomy field. In either case, the 
photograph is injected with metadata that identifies a posi 
tion of the subject of the photograph (i.e., the dog) within the 
hierarchy of a predefined taxonomy. 
As a second example, a technician could use the disclosed 

system to perform a repair, inspection, installation, or other 
activity. For example, the technician could have third-party 
application 250, comprising, or locally or remotely inter 
faced with, metadata-injection module 300, installed on his 
or her mobile user system 130. Third-party application 250 
may guide the technician through each of the tasks that, 
collectively, constitute the activity, for example, in the 
format of a checklist or template. For a cable installation, the 
tasks may comprise connecting a cable distribution infra 
structure to a home, wiring cable through the home, install 
ing a cable box, verifying that the cable box is working 
correctly, etc. For an aircraft inspection, the tasks may 
comprise inspecting each of a list of parts within the aircraft. 

During one or more, and possibly all, of the tasks, 
third-party application 250 may prompt or otherwise provide 
the technician with the opportunity to capture a content item 
related to the task. Using the example of a cable installation, 
third-party application 250 may prompt the technician to 
photograph the connection between the cable distribution 
infrastructure and the home while guiding the technician 
through the connection process, may prompt the technician 
to photograph the installed cable box and/or an AIDC code 
associated with the cable box while guiding the technician 
through installation of the cable box, and the like. Using the 
example of the aircraft inspection, third-party application 
250 may prompt the technician to photograph each inspected 
part while inspecting that part. For example, while third 
party application 250 guides the technician through inspec 
tion of an aileron on the aircraft, third-party application 250 
may prompt the technician to take a photograph of the 
aileron. 

Each of these photographs may be passed to metadata 
injection module 300 as content item 302, and metadata 
injection module 300 may inject metadata related to a 
taxonomy associated with the activity into the photograph. 
Metadata-injection module 300 may pass the photograph to 
object-recognition module 320, which may match object(s) 
(e.g., connectors or cable box in the cable installation 
example, or the aileron or other aircraft parts in the aircraft 
inspection example) in the photograph to an object model in 
reference database 392. Alternatively or additionally, object 
recognition module 320 may OCR an identifier (e.g., serial 
number on a cable box in the cable installation example, part 
number on an aircraft part such as the aileron in the aircraft 
inspection example) in the photograph to generate text 
representing the identifier and return the text identifier to 
metadata-injection module 300. Alternatively or addition 
ally, metadata-injection module 300 may pass the photo 
graph or an AIDC code (e.g., barcode or QR code on a cable 
box in the cable installation example, or on an aircraft part 
Such as the aileron in the aircraft inspection example) 
extracted by object-recognition module 320 to AIDC mod 
ule 365, which may return an identifier encoded in the AIDC 
code and/or additional information associated with that 
identifier or encoded within the AIDC code. It should be 
understood that, where an identifier of an object is obtained 



US 9,715,506 B2 
55 

(e.g., serial number of a cable box, part number of an 
aileron), metadata-injection module 300 may derive addi 
tional data associated with the identifier, for example, by 
retrieving additional data (e.g., asset or inventory details) 
associated with the identifier from asset module 375, as 
discussed elsewhere herein. 

In any case, metadata-injection module 300 may receive 
data related to the photographed object, and inject it into 
each photograph or other content item obtained during an 
activity. In the cable installation example, metadata-injec 
tion module 300 may obtain the serial number of a photo 
graph cable box (e.g., OCR'ed by object-recognition module 
320 or input via user interface 325), a model number of the 
cable box, dimensions of the cable box, features of the cable 
box etc. In the aircraft inspection example, metadata-injec 
tion module 300 may obtain a part number of a part (e.g., 
aileron) recognized in or OCR'ed from the photograph, 
dimensions of the part, prior inspection results for the part, 
etc. 

In addition, metadata-injection module 300 may retrieve 
taxonomy information related to the activity and/or task 
being performed, and inject it into the photograph for a 
particular task. For example, metadata-injection module 300 
may retrieve a dispatch record associated with a given 
activity (e.g., based on an activity identifier passed by 
third-party application 250 to metadata-injection module 
300 or acquired by metadata-injection module 300 from 
another metadata source 220, such as user interface 325 or 
scheduling module 340), and inject information from the 
dispatch record into one or more photographs captured 
during the activity. Furthermore, metadata-injection module 
300 may retrieve a task or task identifier from a taxonomy 
that represents the task (e.g., of installing a cable box, of 
inspecting an aileron) within a hierarchy of the entire 
activity. Metadata-injection module 300 may inject this task 
identifier into the photograph taken during that task. For 
example, task information (e.g., task identifier or informa 
tion associated with the task identifier) of each task within 
the taxonomy of a cable installation can be injected into a 
corresponding photograph of that task, and task information 
for each part inspection within the taxonomy of an aircraft 
inspection can be injected into a corresponding photograph 
of that particular part. This type of metadata injection 
facilitates searching of the activity photographs (e.g., by 
searching based on the field representing the injected task 
identifier), provides the ability to verify activity results (e.g., 
by searching and viewing the photographs of each task 
first-hand), sort the photographs corresponding to each task 
according to the taxonomy (e.g., within the hierarchy of the 
taxonomy, for example, to facilitate post hoc review of the 
activity), audit the activity, evaluate the activity, use the 
activity for training purposes, in the case of the aircraft 
inspection, view each inspected part of a particular aircraft 
over time (e.g., by searching a database for a particular 
aircraft based on a part identifier and/or task identifier within 
the taxonomy), etc. 

4. Content Management System 
The metadata injected into content item(s) (e.g., to pro 

duce metadata-injected content item(s) 304) may be used to 
facilitate searching and organization of the content item(s), 
for example, in a content management system (CMS). 
The CMS may comprise a search engine that identifies 

content items which match one or more criteria, such as 
user-specified parameters and data associations. The CMS 
may perform these identifications based, at least in part, on 
a search of the metadata injected into the content items. For 
instance, the CMS may receive a query comprising one or 

10 

15 

25 

30 

35 

40 

45 

50 

55 

60 

65 

56 
more keywords, and search the metadata injected into the 
stored content items to identify content items injected with 
metadata comprising the keyword(s). The CMS may then 
return results of the search. These results may comprise 
identifications of or references to each identified content 
item or the content items themselves. 
The CMS may also organize the metadata-injected con 

tent items, for example, for storage and/or presentation to a 
user. For instance, the metadata-injected content items may 
be organized in a hierarchical manner based on the injected 
metadata. As an example, metadata-injected content items 
may be arranged into a plurality of “buckets” or folders 
based on their associated metadata. Thus, for example, all 
content items injected with metadata comprising 'John 
Smith' may be organized into a bucket or folder for “John 
Smith.” In this manner, metadata-injected content items are 
"tagged' and easily retrievable according to their metadata. 
It should be understood that, in this example, each metadata 
injected content item may correspond to a plurality of 
buckets or folders. 
The CMS may retrieve the metadata-injected content 

items for a user (e.g., a user of user system 130), for 
example, in response to a search of the content items or in 
response to a selection of a particular content item (e.g., 
from a bucket or folder). As discussed elsewhere herein, the 
content items may be stored remotely from user system 130 
(e.g., by metadata server 110). For example, the metadata 
injected content items (e.g., content item(s) 304) may be 
stored in cloud storage. Cloud storage represents the storage 
of data in virtualized storage pools which are generally 
hosted by third-party data centers. In cloud storage, the data 
may be distributed across a plurality of hardware storage 
devices, which themselves may be geographically distrib 
uted. The content items may be downloaded from the remote 
location over network(s) 120 to user system 130 as needed 
or requested. Alternatively, copies of the content items may 
be maintained at user system 130, while the remote storage 
serves as a backup for the locally-stored content items. 
The CMS may provide a convenient user interface for 

users to access, organize, and search content items stored in 
the cloud. In an embodiment, the CMS may be provided in 
or interfaced with third-party application 250 (e.g., execut 
ing on a user system 130). 

5. Content Streaming 
In an embodiment, content items 302 may be streamed to 

metadata-injection module 300. For example, content items 
302 could each comprise an image frame from a streaming 
Video, or an image from a batch of streaming images. 
Metadata-injection module 300 may inject each frame with 
metadata and output each frame as metadata-injected con 
tent item 304. Alternatively, metadata-injection module 300 
may accumulate metadata for each frame, and inject the 
entire stream (e.g., a video file comprising all of the frames) 
with the accumulated metadata (e.g., with duplication 
removed) as metadata-injected content item 304. 

In an embodiment, the content items 302 may be streamed 
to metadata-injection module 300 in real time (i.e., as they 
are created), in which case the time at which each content 
item 302 is received may be used as the time to be input into 
one or more of metadata sources 220 (e.g., 310-390). 
Alternatively (e.g., if content items 302 are not being 
streamed in real time), the time relevant to each frame may 
be determined as an offset from a time of creation for the 
entire video based on a frame rate of the video. On the other 
hand, for many applications, that level of granularity in time 
may not be necessary or desired for the retrieval of metadata. 



US 9,715,506 B2 
57 

In an embodiment, a user may set the frame rate at which 
metadata should be injected by metadata-injection module 
300 into frames of a streaming content item 302. This 
injection frame rate may be set via a user interface of 
third-party application 250 and/or user interface 325. For 
example, if a user sets the injection frame rate at one frame 
per second for a content item 302 streaming at sixty frames 
per second, metadata-injection module 300 may only inject 
metadata into one frame of streaming content item 302 per 
second, i.e., every sixty frames, such that intervals of 
fifty-nine frames are not injected with metadata. However, it 
should be understood that this is only an example, and that 
other injection frame rates and streaming frame rates are 
possible. 

6. Metadata Streaming 
In an embodiment, metadata may be streamed by one or 

more of metadata sources 220 (e.g., 310-390) to metadata 
injection module 300. This metadata may be streamed to 
metadata-injection module 300 as a real-time feed from 
remote metadata sources (e.g., web services across one or 
more networks, such as external system(s) 150 across net 
work(s) 120). Metadata-injection module 300 may pull 
metadata from these metadata feed(s) as needed for injection 
(e.g., as content items are received). 
As an example, weather module 345 may stream current 

weather information (e.g., temperature, humidity, precipita 
tion, etc.) to metadata-injection module 300 in real time. In 
this case, weather module 345 may be provided with a set of 
one or more locations (e.g., by third-party application 250, 
metadata-injection module 300, third-party platform 240, 
metadata server 110, etc.), such that it only streams weather 
information for those location(s). Alternatively, weather 
module 345 may stream weather information for all avail 
able locations. 
As another example, news module 350 may stream cur 

rent sports information (e.g., sports scores, sports news, etc.) 
to metadata-injection module 300 in real time. Again, news 
module 350 may be provided with a set of one or more 
locations, teams, athletes, etc.. Such that it only streams 
sports information for those location(s), team(s), athletes, 
etc. Alternatively, news module 350 may stream sports 
information for all available locations, teams, athletes, etc. 
As another example, sensor(s) 355 may stream current 

sensor output(s) to metadata-injection module 300 in real 
time. For example, the sensors of a drone may stream 
telemetry data (e.g., acquired by the sensors while the drone 
is in flight) to metadata-injection module 300. 

It is contemplated that metadata Sources other than those 
highlighted herein, Such as satellites, may stream metadata 
to metadata-injection module 300 for injection into content 
items 302. The streaming metadata may comprise descrip 
tive data streams. Additionally or alternatively, the stream 
ing metadata may include technical data streams. Such as 
elevation, wavelength (e.g., for infrared), etc. 

7. Example Use Cases 
Illustrative use cases for how the disclosed third-party 

application (e.g., third-party application 250 or client appli 
cation 132) and or metadata-injection module (e.g., meta 
data-injection module 300) may be utilized will now be 
described. 

7.1. Healthcare 
In an embodiment, the disclosed third-party application 

(e.g., third-party application 250) and/or metadata-injection 
module (e.g., metadata-injection module 300) can be used to 
manage patients, for example, at a healthcare provider's 
facility. 

5 

10 

15 

25 

30 

35 

40 

45 

50 

55 

60 

65 

58 
Generally patients admitted to a healthcare facility receive 

a patient identifier that is linked to a patient’s electronic 
health record (HER) or other patient record stored in a 
database of the healthcare provider. The patient identifier 
may be encoded into AIDC technology. Such as a QR code 
(e.g., printed on a wristband worn by the patient) and/or 
RFID tag (e.g., embedded in a wristband worn by the 
patient). 
The healthcare provider may capture a content item from 

the patient for security purposes (e.g., a photograph of the 
patient's face, iris, fingerprint, etc.), for diagnostic purposes 
(e.g., a photograph of an injury, skin condition, mole, etc., an 
X-ray image, etc.), and/or for any other purpose (e.g., patient 
monitoring, training, etc.). The content item may be cap 
tured upon the patients initial visit to the healthcare pro 
vider, and/or during Subsequent visits. For example, this 
content item may be captured by third-party application 250 
or another application executing on or interfaced with a 
capture device. The content item may then be passed as 
content item 302 to metadata-injection module 300, which 
may inject metadata into the content item. This metadata 
may comprise, without limitation, a patient identifier, infor 
mation from the patient's record (e.g., electronic health 
record), information from a healthcare provider's record 
(e.g., physician’s record), insurance codes (e.g., retrieved 
from a module similar to asset module 375), a location (e.g., 
received from location module 335), scheduled event details 
(e.g., retrieved from scheduling module 340), a duration of 
the visit, a prognosis and/or physician annotations (e.g., 
input via user interface 325), etc. 

Metadata-injection module 300 may receive the patient 
identifier from one of the metadata sources 310-390 in any 
of the manners described herein. For example, the patient 
identifier may be captured in an audio recording (e.g., a 
healthcare provider speaking into a microphone of the 
capture device), which is converted to text by audio-to-text 
module 310. As another example, the patient identifier could 
be manually entered by a healthcare provider into user 
interface 325. As another example, the patient identifier may 
be decoded or received from an AIDC technology. For 
instance, the photograph of the patient may be captured 
while the user is holding up his or her wristband to the 
camera, such that the barcode printed on the patients 
wristband can be identified by object-recognition module 
320 and/or decoded by AIDC module 365 into the patient 
identifier, as described elsewhere herein. Alternatively, the 
photograph of the patient may be captured while third-party 
application 250 reads or otherwise receives information 
from an RFID tag (or contemporaneously with third-party 
application 250 receiving information from an RFID tag) 
embedded within the patient’s wristband. The read range 
and/or position of the RFID reader may be set so as to only 
be able to read information from an RFID tag being worn by 
a patient in front of the capture device. Such a configuration 
may avoid reading another patient’s RFID tag while cap 
turing the photograph. In either case, metadata-injection 
module 300 may receive the patient identifier in AIDC 
information returned by AIDC module 365. 
The metadata-injected photograph that is output from 

metadata-injection module 300 may be stored by the health 
care provider (e.g., in the patient's EHR or other patient 
record), and preferably in a database that complies with the 
Health Insurance Portability and Accountability Act 
(HIPAA)) for subsequent use. 
As an example of one advantageous use of this embodi 

ment, a healthcare provider may capture a photograph of a 
patient’s mole as a content item 302 over the course of 



US 9,715,506 B2 
59 

several visits, and easily search for the metadata-injected 
content items 304 based on their metadata or by viewing the 
patient's record to visualize how the mole has changed over 
time. As another example, photographs of a particular 
patient condition (e.g., injury, skin condition, etc.) may be 
injected by metadata-injection module 300 with metadata 
related to the patient (e.g., weight, height, age, etc.) and/or 
condition (e.g., etiology, diagnosis, physician annotations, 
etc.), but which does not identify the patient. In this case, the 
metadata-injected content item 304 may be used for training 
purposes (e.g., for medical students, for physicians, etc.). As 
yet another example, the metadata-injected content items 
304 may be used for compliance (e.g., for the healthcare 
provider's malpractice insurance), auditing, and/or evidence 
in a malpractice lawsuit. 

7.2. Telemedicine 
Similarly, in an embodiment, the disclosed third-party 

application (e.g., third-party application 250) and/or meta 
data-injection module (e.g., metadata-injection module 300) 
can be used to manage medical services provided outside a 
healthcare provider's facility, such as in the case of tele 
medicine. One major problem for healthcare provides who 
utilize telemedicine is receiving payment from an insurance 
company for the telemedical services rendered to a patient 
that has a health insurance policy with the insurance com 
pany. Many insurance companies may be skeptical with 
respect to insurance claims for telemedical services, because 
its inherent inability to be verified (e.g., by hospital records) 
lends itself to fraud. 

In an embodiment, third-party application 250 may com 
prise or be interfaced with telemedical software. The tele 
medical software may be dedicated telemedical software, or 
may instead be any software which enables communications 
between two parties (e.g., Voice-over-Internet-Protocol 
(Voip) software, SkypeTM, etc.). The telemedical software 
may generate an audio, visual, or audiovisual recording of a 
virtual patient visit, i.e., between a healthcare provider (e.g., 
physician) and patient (e.g., over the Internet or phone). A 
visual or audiovisual recording may be conducted using 
cameras provided at each of the healthcare provider's and 
patient's user systems (e.g., user systems 130). It should be 
understood that, in the case of a visual or audiovisual 
recording, the recording may comprise a plurality of images 
or image frames captured by the camera at the healthcare 
provider's system and/or by the camera at the patients 
system. In addition, it should be understood that the patients 
user system may not actually be owned by the patient, but 
may be a system at any location (e.g., a health care facility) 
that is remote from the healthcare provider's location, and 
that the visual or audiovisual recording may comprise 
images or image frames captured by the camera at the 
patient’s system during a procedure being performed 
remotely by the healthcare provider on the patient (e.g., 
Surgery, inspection, etc.). In the case of audio or audiovisual 
recording, the recording may comprise a conversation 
between the healthcare provider and patient. 

The captured recording may be passed by the telemedical 
software to metadata-injection module 300 after it has been 
recorded (e.g., as a video file) or during recording (e.g., as 
a content stream, as discussed elsewhere herein). In either 
case, metadata-injection module 300 may inject metadata 
into content item 302 as a whole (e.g., into metadata fields 
associated with content item 302) and/or on a frame-by 
frame basis (e.g., into metadata fields associated with one or 
more individual frames or subset of frames in content item 
302). This injected metadata may comprise, without limita 
tion, information from a physician record for the healthcare 

5 

10 

15 

25 

30 

35 

40 

45 

50 

55 

60 

65 

60 
provider, information from a patient record for the patient, 
text of a conversation represented in content item 302 (e.g., 
extracted from by audio-to-text module 310 from an audio 
or audiovisual recording), insurance codes (e.g., retrieved 
from a module similar to asset module 375), a location (e.g., 
received from location module 335), scheduled event details 
(e.g., retrieved from scheduling module 340), a duration of 
the telemedical service, a prognosis and/or physician anno 
tations (e.g., input via user interface 325), etc. In addition, 
metadata-injected content item 304 may be added to the 
patient's record (e.g., electronic health record), and/or oth 
erwise stored (e.g., in database(s) 112). 

Advantageously, metadata-injected content item 304 is a 
verifiable record of the telemedical service that was per 
formed. Thus, metadata-injected content item 304 can be 
provided during an insurance audit or with an insurance 
claim as proof that the telemedical service was actually 
performed, thereby facilitating payment for the telemedical 
service by the insurance company to the healthcare provider. 

7.3. Automated Scheduling 
In an embodiment, the disclosed third-party application 

(e.g., third-party application 250) and/or metadata-injection 
module (e.g., metadata-injection module 300) can be used to 
automatically schedule events (e.g., in scheduling module 
340). 

For example, a user could use a third-party application 
250 or another application executing on his or her mobile 
device (e.g., Smartphone, tablet, etc.) to capture a photo 
graph of a QR code. The application may convert the QR 
code to AIDC information, for example, using the tech 
niques described herein with respect to object-recognition 
module 320 and/or AIDC module 365. It should be under 
stood that this same example could be applied to AIDC 
technologies other than QR codes. For example, the mobile 
device may be used to capture a photograph of a barcode, 
capture a photograph of printed text and perform OCR on 
the photograph to output the text, and/or read or receive 
information from an RFID tag, magnetic stripe, or Smart 
card. 

Regardless of the AIDC technology used to acquire the 
AIDC information, the AIDC information may comprise 
scheduling information, including one or more event details 
and one or more parameters defining a time period. The 
application may automatically pass this scheduling informa 
tion to a local or remote calendar application, which com 
prises, is comprised in, or is accessible (e.g., via an API. 
standard communication protocols, etc.) to scheduling mod 
ule 340. The scheduling information may be automatically 
input into the calendar application as a new event entry to be 
managed by the calendar application, Such that it is available 
to scheduling module 340. 

Subsequently, during the time period defined in event 
entry, the user may use third-party application 250 to capture 
a photograph. Third-party application 250 may pass the 
photograph to metadata-injection module 300. Metadata 
injection module 300 may pass the timestamp for creation of 
the photograph to scheduling module 340. 

Scheduling module 340 may determine that the time 
stamp received from metadata-injection module 300 is 
encompassed by the time period defined in the event entry 
in the calendar application. Thus, scheduling module may 
derive scheduling information from the event entry and 
return that scheduling information to metadata-injection 
module 300. 

Metadata-injection module 300 may receive the schedul 
ing information from scheduling module 340, and automati 
cally inject the scheduling information into the captured 



US 9,715,506 B2 
61 

photograph as metadata. Thus, the captured photograph will 
be automatically injected with event details from the user's 
calendar application. 
As an example, a QR code may be printed on a poster or 

ticket for an upcoming concert, and the QR code may 
encode information for the concert, Such as "Los Angeles 
Philharmonic' at “Segerstrom Concert Hall' in “Costa 
Mesa, Calif” on Jan. 1, 2016 from 6:00 pm to 8:00 pm. A 
user may photograph the QR code printed on the poster or 
ticket using a camera on his or her mobile device or 
wearable device (e.g., Google GlassTM), and the QR code 
may be automatically decoded into the event information 
and entered as a new event entry into the user's calendar 
application. 

Subsequently, on Jan. 1, 2016 at 6:15 pm, while the user 
is presumably attending the concert, the user may use the 
camera on his or her mobile device to capture a selfie of 
himself or herself. Third-party application 250 may pass this 
photograph to metadata-injection module 300, which passes 
a timestamp of the photograph to scheduling module 340. 
Scheduling module 340 identifies the event entry based on 
the timestamp and returns scheduling information derived 
from the event entry. Metadata-injection module 300 then 
injects the scheduling information as metadata into the 
selfie. For example, the metadata-injection module 300 may 
embed “Los Angeles Philharmonic' into a metadata field 
specified a description and “Segerstrom Concert Hall, Costa 
Mesa, Calif.” into a metadata field specified for a location. 
It should be understood that the timestamp may remain 
associated with the photograph as technical metadata. 

7.4. Asset Management 
In an embodiment, the disclosed third-party application 

(e.g., third-party application 250) and/or metadata-injection 
module (e.g., metadata-injection module 300) can be used to 
manage corporate or utility assets in the field. 

For example, a worker in the field could use a third-party 
application 250 executing on his or her mobile user system 
130 (e.g., Smartphone, tablet, etc.) to capture a photograph 
of an asset (e.g., a wind turbine), including a QR code 
affixed to the asset. Third-party application 250 may pass the 
photograph as content item 302 to metadata-injection mod 
ule 300 (e.g., during or any time after creation). 

Metadata-injection module 300 may pass the photograph 
to object-recognition module 320. Object-recognition mod 
ule 320 may match the QR code in the photograph to a 
model of a QR code in reference database 392, thereby 
identifying the QR code as a QR code. Object-recognition 
module 320 may return the QR code to metadata-injection 
module 300. 

Metadata-injection module 300 may then pass the QR 
code to AIDC module 365. AIDC module 365 may decode 
the QR code into an asset identifier, and return the asset 
identifier to metadata-injection module 300. 

Metadata-injection module 300 may then pass the asset 
identifier to asset module 375. Asset module 375 may send 
a request comprising the asset identifier over one or more 
networks to a remote asset database, which performs a 
lookup on the asset identifier and returns associated asset 
information. Asset module 375 may return the associated 
asset information to metadata-injection module 300. 

Metadata-injection module 300 may parse the asset infor 
mation to generate metadata from the asset information. For 
example, the metadata may comprise the asset identifier, a 
description of the asset (e.g., manufacturer, model number, 
serial number, etc.), inspection history, maintenance history, 
and/or the like. In an embodiment, the metadata may also 
comprise a location of the asset (e.g., received from location 

10 

15 

25 

30 

35 

40 

45 

50 

55 

60 

65 

62 
module 335), such as a map image with the location of the 
asset plotted on the map. For example, metadata-injection 
module 300 may retrieve location information (e.g., current 
GPS coordinates, map image, etc.) of mobile user system 
130, at the time that the photograph is captured, from 
location module 335, and inject the location information into 
the photograph. In this manner, an organization can keep 
track of the location of its assets in the field over time by 
storing the location-injected photographs for each asset for 
Subsequent searching and/or reporting. For example, an 
asset manager for the organization can do a search, based on 
an asset identifier, to view all of the photographs of the 
identified asset over time, as well as their locations (e.g., 
stored as an address, GPS coordinates, and/or plotted map 
image in the metadata for each photograph). In addition, the 
organization can ensure that assets are at the location at 
which they should be, for example, by comparing the 
location information in a location-injected photograph of an 
asset with an expected location of the asset. 

Metadata-injection module 300 may then inject the meta 
data into content item 302 to produce metadata-injected 
content item 304. In embodiments which abuse standard 
fields, metadata-injection module 300 may consult a meta 
data-to-field matching and input the metadata into the 
mapped fields based on metadata type. Metadata-injected 
content item 304 may be used for tracking the location of the 
asset (e.g., over time), compliance (e.g., to verify the loca 
tion of an asset, condition of the asset, etc.), field manage 
ment, collaboration (e.g., metadata-injected content item 
304 may be shared with others to arrive at a collective 
resolution on how to repair the asset, etc.), monitoring a 
repair being performed on the asset (e.g., content items 
comprising a pre-repair photograph of the asset, photograph 
(s) taken of the asset during the repair, and/or post-repair 
photograph of the asset), assessing or evaluating a repair 
completed on the asset or a potential need to replace the 
asset, visualization of the asset over time (e.g., content items 
comprising photographs of the asset at a plurality of points 
in time), etc. 

In an alternative or additional use case, a user could utilize 
a scheduling application (e.g., part of third-party application 
250) to schedule metadata for a planned maintenance. For 
example, a worker (who may or may not be the same as the 
user) may plan to be performing maintenance on a wind 
turbine between 12:00 pm and 2:00 pm on a particular day. 
Thus, the user may utilize the scheduling application to 
associate 12:00 pm to 2:00 pm on that day with metadata 
associated with the wind turbine and/or planned mainte 
nance tasks. For illustration purposes, the metadata may 
comprise an asset identifier for the wind turbine and a 
description of the work to be performed. 
On the day, between 12:00 pm and 2:00 pm, the worker 

may perform the maintenance, as planned. During the main 
tenance, the worker may take photographs of various fea 
tures of the wind turbine, for example, using third-party 
application 250 executing on a mobile device (e.g., Smart 
phone, tablet, etc.). 

Third-party application 250 may pass the photographs as 
content items 302 to metadata-injection module 300 (e.g., 
during or after the time period of 12:00 pm to 2:00 pm). 
Metadata-injection module may consult scheduling module 
340, which comprises, is comprised in, or interfaces with the 
scheduling application in which the planned maintenance 
was previously recorded. Because the timestamps of the 
photographs are within the time period between 12:00 pm 
and 2:00 pm, Scheduling module returns scheduling infor 
mation, including the asset identifier and work description, 



US 9,715,506 B2 
63 

to metadata-injection module 300. Metadata-injection mod 
ule 300 may inject the asset identifier and work description, 
as metadata, into content items 302. 

In addition, metadata-injection module 300 may derive 
additional metadata, based on the asset identifier and/or 
work description. For example, metadata-injection module 
300 may pass the asset identifier to asset module 375, which 
may query an asset database using the asset identifier and 
return asset information associated with that asset identifier 
in the asset database to metadata-injection module 300. 
Metadata-injection module 300 may further inject the 
received asset information into content items 302. Similarly, 
metadata-injection module 300 may extract task identifiers 
from the work description, pass these identifiers to a meta 
data source (e.g., similar to asset module 375), which 
queries a task database using the task identifiers to retrieve 
task descriptions and returns the task descriptions to meta 
data-injection module 300 to be injected into content items 
3O2. 

In an additional or alternative embodiment, metadata 
injected content item 304 may comprise a composite image 
generated by metadata-injection module 300. The composite 
image may comprise a visual depiction of location metadata, 
Such as a map image with a plot indicating the location of the 
asset associated with the asset identifier (e.g., acquired in 
any manner described herein) relative to the map image. 
Alternatively or additionally, the composite image may 
comprise visual representations of assets that are related to 
the asset associated with the acquired asset identifier. These 
visual representations may be images of other assets cap 
tured (e.g., by the worker's mobile user system 130) con 
temporaneously with each other or using related user inter 
face(s), or may be images that are included in the asset 
information retrieved from asset module 375. As an 
example, an image of an asset may be composed with 
image(s) of component(s) of that asset, for example, that are 
themselves assets, and may also be embedded with metadata 
related to all of the depicted assets. For instance, a composite 
image for a wind turbine asset may comprise an image of the 
wind turbine composed with images of the blades, tower, 
and/or generator, and may also include embedded metadata 
related to the wind turbine, blades, tower, and/or generator. 
As another example, a composite image for a company 
vehicle may comprise an image of the vehicle composed 
with images of the vehicle's tires, odometer, license plate, 
etc., and may also include embedded metadata for one or 
more of the vehicle (e.g., make, model, color, year, vehicle 
identification number), tires (e.g., age), odometer (e.g., OCR 
of the odometer reading), license plate (e.g., license plate 
number, registration information), etc. In this manner, a 
single metadata-injected content item 304, generated by 
metadata-injection module 300, may comprise a composite 
image depicting a plurality of related assets and/or asset 
components, and may additionally comprise metadata (e.g., 
visually depicted in the composite image and/or in embed 
ded or side car fields) for one or more, including all, of the 
depicted assets and/or asset components. Advantageously, 
Such a metadata-injected content item 304 comprises a 
multitude of information for a set of related assets in a single 
file. 

It should be understood that this is merely one illustration, 
and that this compositing technique may be applied advan 
tageously in contexts other than asset management. For 
example, in the context of contacts, the metadata-injected 
content item 304 may comprise images of a plurality of 
related contacts and/or metadata associated with those con 
tacts. In the context of expense auditing and/or reimburse 

10 

15 

25 

30 

35 

40 

45 

50 

55 

60 

65 

64 
ment, explained in more detail elsewhere herein, the meta 
data-injected content item 304 may comprise images of 
receipts, attendees, odometer readings, etc. related to a 
business expense and/or metadata associated with the busi 
ness expense. In addition, other contexts and use cases will 
be apparent to reviewers of the present application. 

7.5. Wearable Devices 
In an embodiment, the disclosed third-party application 

(e.g., third-party application 250) and/or metadata-injection 
module (e.g., metadata-injection module 300) can be used in 
conjunction with wearable devices (e.g., Google GlassTM) 

For example, the wearable device may represent user 
system 130, and may comprise an image acquisition device 
(e.g., camera) and/or Sound recording device (e.g., micro 
phone). A user, wearing the device, may utilize the device to 
capture a content item 302. In some embodiments, the 
wearable device may itself execute third-party application 
250 and/or metadata-injection module 300 to inject metadata 
from metadata sources 220 (e.g., 310-390) into content item 
3O2. 

Alternatively, the wearable device may transmit content 
item 302 to another device to be stored, either contempo 
raneously with capture of content item 302 or subsequent to 
capture of content item 302. For example, the wearable 
device may transmit content item 302 to a smartphone in the 
user's pocket (e.g., using BluetoothTM or other wireless or 
wired technology). In this case, the Smartphone may repre 
sent user system 130 executing third-party application 250 
and/or metadata-injection module 300 to inject metadata 
from metadata sources 220 (e.g., 310-390) into content item 
302. As another example, the wearable device may transmit 
content item 302 directly to metadata server 110 for storage 
(e.g., in cloud storage). In this case, metadata server 110 may 
execute metadata-injection module 300 to inject metadata 
from metadata sources 220 (e.g., 310-390) into content item 
3O2. 

7.6. Drones 
In an embodiment, the disclosed third-party application 

(e.g., third-party application 250) and/or metadata-injection 
module (e.g., metadata-injection module 300) can be used in 
conjunction with drones. 

For example, the drone may represent user system 130 or 
may communicate content items 302 to a user system 130 
(e.g., via a wireless interface). The drone may comprise an 
image acquisition device (e.g., camera) and/or Sound record 
ing device (e.g., microphone), and use these device(s) to 
generate content items 302 (e.g., photographs, video, audio, 
etc.). 

In the case that the drone executes metadata-injection 
module 300, the metadata may be injected into each content 
item 302 at the drone, and the metadata-injected content 
item 304 may be stored on the drone for subsequent retrieval 
(or transmitted (e.g., via a wireless interface) to another 
system for storage. In the case that metadata-injection mod 
ule 300 is executed remotely from the drone, the drone may 
transmit (e.g., via a wireless interface) each content item 302 
to the system executing metadata-injection module 300, or 
may store each content item 302 for subsequent transfer to 
the system executing metadata-injection module 300. 

Regardless of where metadata-injection module 300 is 
executed (i.e., either locally or remotely from the drone), 
metadata-injection module 300 may communicate with sen 
sor(s) 355 integral or interfaced with the drone. Thus, 
content items 302 captured by the drone are automatically 
injected with sensor output captured by the drone. As 
discussed elsewhere herein, the timing of the sensor outputs 
can be synched to the time of creation for each content item 



US 9,715,506 B2 
65 

302, such that each content item 302 comprises, as metadata, 
the sensor output at the time that the particular content item 
was created. Thus, for example, each content item 302 
represents both what the drone “saw” and “felt at a given 
moment. 

In addition, metadata-injection module 300 may retrieve 
DRM information from DRM module 380, and utilize the 
DRM information to apply a DRM scheme to content item 
302. Thus, each content item 302 captured by the drone may 
be automatically covered by a predefined DRM scheme. 

7.7. Historic Metadata 
In an embodiment, since metadata-injection module 300 

may utilize a timestamp representing the time that content 
item 302 was generated when retrieving metadata, metadata 
injection module 300 may inject metadata related to the time 
of creation of content item 302, regardless of how long ago 
content item 302 was created before being received by 
metadata-injection module 300. Thus, regardless of whether 
metadata-injection module 300 receives content item 302 
immediately after its creation, recently after its creation, or 
long after its creation, metadata-injection module 300 may 
inject metadata that is relevant to the time of creation. 

Thus, for example, on Jan. 1, 2016, a user may utilize a 
third-party application 250 to load a photograph, taken using 
a digital camera on Jan. 1, 2000, into metadata-injection 
module 300. Metadata-injection module 300 may pass the 
timestamp, representing Jan. 1, 2000, to one or more of 
metadata sources 220 (e.g., 310-390) to retrieve metadata 
relevant to Jan. 1, 2000. For example, metadata-injection 
module 300 may pass the timestamp to weather module 345 
to retrieve historic weather information from Jan. 1, 2000, 
metadata-injection module 300 may pass the timestamp to 
news module 350 to retrieve historic news information from 
Jan. 1, 2000, metadata-injection module 300 may pass the 
timestamp to sensor(s) 355 to retrieve historic sensor output 
from Jan. 1, 2000, etc. This retrieved metadata, relevant to 
Jan. 1, 2000, may then be injected into content item 302 to 
produce metadata-injected content item 304. 

In Some cases, the content item may predate digital 
acquisition, and therefore, may not have a timestamp or may 
not have a timestamp reflecting the actual time at which the 
content item was captured. For example, the user may 
possess a hardcopy of a photograph taken on Jan. 1, 1950, 
which was produced from a negative created by a non 
digital camera. In this case, the user may scan the photo 
graph into a digital format (e.g., JPEG), on Jan. 1, 2016, to 
produce content item 302. However, the timestamp that is 
created for the photograph by the scanning system will 
reflect time at which the photograph was scanned (i.e., Jan. 
1, 2016), rather than the time at which the photograph was 
taken (i.e., Jan. 1, 1950). Thus, in this case, the user could 
alter the timestamp of content item 302. Alternatively, 
third-party application 250 or metadata-injection module 
300 may provide a user interface into which the user may 
input the correct or approximate date and/or time. For 
instance, the user may enter user input 393, comprising the 
correct date, into user interface 325, which provides user 
input 393 to metadata-injection module 300 for injection 
into content item 302. In either case, content item 302 may 
be injected with metadata relevant to the time of capture 
(i.e., Jan. 1, 1950), in the same manner as discussed above, 
to produce metadata-injected content item 304. Thus, for 
example, a photograph taken at the 1984 Olympics in Los 
Angeles can be converted into a digital format and auto 
matically injected with descriptive metadata, including 
weather and news headlines from the time, by metadata 
injection module 300. 

10 

15 

25 

30 

35 

40 

45 

50 

55 

60 

65 

66 
In this manner, metadata can be added retroactively to 

legacy material to produce metadata-injected content items 
304 that are associated, in their metadata, with other content 
items from the same time period (e.g., to facilitate searching 
for content items based on time period). It should be 
understood that the described process for metadata-injection 
may be performed in bulk or batch, such that a plurality of 
content items are injected with metadata at the same time. In 
Some cases, the metadata may be the same metadata. For 
example, a user may inject the same metadata into a plurality 
of photographs taken at the 1984 Olympics by providing the 
plurality of photographs, along with a time, to metadata 
injection module 300, as discussed above. 

7.8. Quick Tags 
In an embodiment, the disclosed third-party application 

(e.g., third-party application 250) and/or metadata-injection 
module (e.g., metadata-injection module 300) can be used to 
quick-tag photographs with contact or patient information in 
the professional or healthcare setting, respectively. 

For example, a professional may meet with a client or a 
physician may meet with a patient. In this setting, the 
professional or physician may open third-party application 
250, which may provide a quick-tag input (e.g., a soft key on 
a user interface). The professional or physician may activate 
the quick-tag input and speak the name of the client or 
patient. The user interface of third-party application 250, 
comprising the quick-tag input or following activation of the 
quick-tag input, may also provide inputs for the professional 
or physician to specify one or more parameters to be used by 
quick-tag module 385. For instance, these parameters may 
include the number of photographs to which the quick-tag 
metadata is to be applied and/or the amount of time that the 
quick-tag metadata should be applied. Third-party applica 
tion 250 may record the spoken name, receive the param 
eters, and pass the audio recording and parameters to quick 
tag module 385. 

Subsequently, during the meeting, the professional or 
physician may take photographs of or with the client or 
patient using third-party application 250. These photographs 
may be passed by third-party application 250 to metadata 
injection module 300. Metadata-injection module 300 may 
request metadata from quick-tag module 385, and, if the 
parameters are satisfied (e.g., the content item is one of the 
number of photographs to be quick tagged or is within the 
time period for quick tagging), quick-tag module 385 may 
return the quick-tag metadata to metadata-injection module 
300. Metadata-injection module 300 may receive the quick 
tag metadata and embed it, possibly with other metadata, 
into each photograph to produce metadata-injected photo 
graphs. It should be understood that, in the case that the 
quick tag is received as audio, metadata-injection module 
300 may pass the audio to audio-to-text module 310, which 
may convert the audio to text and return the text to metadata 
injection module 300. In this case, metadata-injection mod 
ule 300 may inject the text into each photograph instead of 
or in addition to the audio. 

7.9. Expense Auditing 
In an embodiment, the disclosed third-party application 

(e.g., third-party application 250) and/or metadata-injection 
module (e.g., metadata-injection module 300) can be used to 
facilitate the auditing and/or reimbursement of business 
expense. Specifically, metadata-injection module 300 may 
inject relevant metadata into images of receipts, invoices, 
and the like. 

For example, an employee may take a client to dinner at 
a restaurant. The employee may utilize third-party applica 
tion 250 on his mobile user system 130 to capture a 



US 9,715,506 B2 
67 

photograph of a receipt from the dinner. Metadata-injection 
module 300 (e.g., comprised within or interfaced with 
third-party application 250) may receive the photograph as 
content item 302, and inject authorship information from 
authorship module 315, an employee identifier or other 
employee information from asset module 375, a location 
(e.g., an address, an address plotted on a map image, etc.) of 
the restaurant from location module 335 (e.g., including 
and/or derived from current GPS coordinates of mobile user 
system 130), a list of attendees or other event details from 
scheduling module 340, quick tags from quick-tag module 
385, and/or a review of the restaurant (e.g., YelpTM: review) 
from news module 350 (e.g., based on current GPS coordi 
nates of mobile user system 130 or an identifier of the 
restaurant from user input 393 via user interface 325 or 
scheduling module 340). In addition, the photograph may be 
OCR'ed (e.g., by object recognition module 320), and the 
line items, including costs and taxes, may be injected by 
metadata-injection module 300 as metadata into the photo 
graph. It should be understood that these are simply illus 
trations, and metadata-injection module 300 may inject less, 
more, or different metadata than those described. 
The result of the metadata injection is a metadata-injected 

photograph of the receipt as metadata-injected content item 
304. This metadata-injected photograph may then be sub 
mitted by the employee to an accounting department of his 
employer for reimbursement. The metadata-injected photo 
graph may already comprise all of the information needed 
for reimbursement, auditing, searching (e.g., by employee 
name or other identifier, cost, restaurant, location), etc., 
and/or serves as evidence that the employee's expense report 
is legitimate (e.g., that the employee was at the stated 
restaurant at the stated time). Accordingly, the expense 
reimbursement procedure is streamlined, for example, from 
a tedious reimbursement form that must be manually filled 
out by the employee with a copy or scan of the receipt, to a 
single photograph that the employee can email to the 
employer's accounting department. 

In another example, metadata-injection module 300 may 
generate a composite metadata-injected content item 304 to 
be used for auditing and/or reimbursement of business 
expenses. Again using the illustration of an employee taking 
a client to dinner at a restaurant, third-party application 250, 
which may be installed on the employee's mobile device, 
may prompt or otherwise enable the employee to capture a 
photograph of the receipt for dinner, photographs of a 
starting and ending odometer reading in the instrument panel 
of the employee's vehicle, photograph(s) of the attendee(s) 
(e.g., at the restaurant), and/or other photographs (e.g., 
photograph(s) of the restaurant, waiter/waitress, food, 
drinks, etc.). Each of these photographs may be passed by 
third-party application 250 to metadata-injection module 
3OO. 

Metadata-injection module 300 may combine these pho 
tographs into a composite image. In an embodiment, meta 
data-injection module 300 combines the photographs using 
a template that specifies how the different photographs 
should be arranged. Metadata-injection module 300 may 
also add visual depictions of metadata to the composite 
image. As an illustration, the template may specify that the 
photograph of the receipt be placed in the upper-left corner 
of the composite image, the photographs of the odometer 
readings be placed in the upper-right corner of the composite 
image, and the photographs of the attendee(s) be placed in 
the lower-left corner of the composite image. In addition, 
metadata-injection module 300 may retrieve location infor 
mation from location module 335 based, for example, on a 

10 

15 

25 

30 

35 

40 

45 

50 

55 

60 

65 

68 
GPS reading of the employee's mobile device at the time 
that one or more of the photographs are captured (e.g., at the 
time that the photograph of the receipt and/or attendee(s) are 
captured). The location information may comprise an image 
of a portion of a map with the location of the employee's 
mobile device (i.e., representing the location of the restau 
rant) plotted on the map portion, and/or a route traveled by 
the employee from the time he or she captured the starting 
odometer reading to the time that he or she captured the 
ending odometer reading (e.g., which may be tracked by 
third-party application 250 using periodic GPS readings). 
Alternatively or additionally, the location information could 
include an address corresponding to the location of the 
employee's mobile device (i.e., the address of the restau 
rant), and/or the starting and ending points of the employee's 
route. In any case, metadata-injection module 300 may add 
the location information to the composite image. For 
example, the template may specify that the location infor 
mation (e.g., address, map image, including restaurant loca 
tion and/or route) be placed in the lower-right corner of the 
composite image. 

It should be understood that the described template, 
comprising a selection and arrangement of image(s) and/or 
visual depiction(s) of metadata, is merely one example, and 
that a template may define other selections and arrangements 
of images and visual depictions of metadata than those 
described. It should also be understood that a template may 
be used in the same or similar manner to create composite 
images in a variety of other use cases and examples other 
than business expense auditing and/or reimbursement, 
including any of those described herein. 

Additionally, metadata-injection module 300 may add 
metadata to embedded fields or a sidecar file of the com 
posite image. For example, metadata-injection module 300 
may add the employee's identifier, as well as the address 
returned from location module 335, to the metadata. Meta 
data-injection module 300 may OCR the receipt (e.g., using 
object recognition module 320 or AIDC module 365), and 
add the store location and/or number, date, time, line items 
(e.g. with descriptions and amounts of purchased items), tax 
amount, tip amount, and/or total amount from the receipt to 
the metadata. As another example, metadata-injection mod 
ule 300 may OCR the odometer readings, calculate a dif 
ference between the ending and starting odometer readings, 
and add the difference amount to the metadata. As yet 
another example, metadata-injection module 300 may per 
form facial recognition (e.g., using object recognition mod 
ule 320) and/or contact lookup (e.g., using contacts module 
370) to identify names for the attendee(s) in the photograph 
of the attendee(s), and add their names to the metadata. 
Metadata-injection module could also retrieve event details, 
if available, from scheduling module 340. It should be 
understood that metadata-injection module 300 may use any 
of the techniques described herein to retrieve different or 
additional metadata to be injected into the composite image. 
Once the composite image has been generated (possibly 

with associated metadata), metadata-injection module 300 
outputs the composite image as metadata-injected content 
item 304. The employee and/or third-party application 250 
may then provide metadata-injected content item 304, com 
prising the composite image, as a digital file to an account 
ing department of the employer (e.g., to an employee within 
the accounting department, or to accounting software pro 
vided by the employer). Advantageously, the composite 
image comprises all of the information needed to validate 
the business expense for tax and/or internal purposes in one 
visual mash-up. In addition, if metadata has been added to 



US 9,715,506 B2 
69 

embedded or sidecar fields of the composite image, those 
fields may be searched or used to automatically populate 
fields of accounting software (e.g., expense amount, 
employee identifier, etc.). 

In an embodiment, to prevent employees from faking 
travel expenses or locations, location module 335 may 
derive any of the location information discussed herein from 
GPS coordinates received directly from a GPS sensor in the 
employee's mobile device, and/or third-party application 
250 may prevent or detect tampering with metadata-injected 
content item 304. Thus, metadata-injected content item 304, 
with the composite image and/or embedded location infor 
mation, represents proof that the employee actually was 
where the employee said he or she was. 

7.10. Dispatch 
In an embodiment, the disclosed third-party application 

(e.g., third-party application 250) and/or metadata-injection 
module (e.g., metadata-injection module 300) can be used in 
conjunction with a dispatch system. Specifically, metadata 
injection module 300 may inject relevant metadata into 
content items generated during a dispatch activity. 

For example, scheduling module 340 may comprise or be 
interfaced with a dispatch system, which schedules and/or 
produces dispatch activities (e.g., for asset management, 
installations, repairs, inspections, emergency or non-emer 
gency police, fire, or medical services, etc.). In this case, 
each dispatch activity may be a scheduled event, such that 
content items created by a dispatched user (e.g., a techni 
cian, paramedic, police officer, fire fighter, etc, using a 
mobile user system 130 executing third-party application 
250) during a time period associated with the dispatch 
activity is automatically injected with dispatch-related meta 
data (e.g., details about the dispatch activity, etc.). In some 
instances, the time period may be defined as the current time 
or other start time until an indication is received (e.g., at the 
dispatch system) that the dispatch activity is complete (i.e., 
no predefined end time), to accommodate fluid or dynamic 
(e.g., emergency) dispatch activities for which an end time 
is not known ahead of time. 
As an example, a dispatcher may dispatch a user to a 

dispatch activity, and associate a user identifier of the user 
with the dispatch activity. In addition, the dispatcher, user, or 
third-party application 250 (e.g., automatically) may asso 
ciate a time period with the dispatch activity. Thereafter, 
when the dispatched user creates a content item 302 (e.g., 
takes a photograph or video using a mobile user system 
130), content item 302 is passed to metadata-injection 
module 300. Metadata-injection module 300 may pass the 
user's identifier to scheduling module 340, which may 
perform a lookup of dispatch activities that are both asso 
ciated with the user identifier and associated with a time 
period that encompasses the time at which content item 302 
was created. Dispatch information associated with matching 
dispatch activities are returned to metadata-injection module 
300, which injects the dispatch information (possibly with 
other information) as metadata into content item 302 to 
generate metadata-injected content item 304. This dispatch 
information may comprise, without limitation, a description 
of the dispatch activity, a location of the dispatch activity 
(e.g., address, GPS coordinates, plotted map image), details 
about the dispatch activity, taxonomy values from a tax 
onomy for the dispatch activity, a list of users or other 
individuals associated with the dispatch activity, an asset 
record (e.g., if the dispatch activity is an inspection, repair, 
or installation of an asset), a customer record (e.g., if the 
beneficiary of the dispatch is a consumer of a good or service 
provided by the dispatcher), an employee record (e.g., of the 

10 

15 

25 

30 

35 

40 

45 

50 

55 

60 

65 

70 
dispatched user), a patient record (e.g., if the dispatch 
activity is emergency medical care), results for the dispatch 
activity, etc. In this manner, content items related to a 
dispatch activity are automatically injected with metadata 
related to that dispatch activity. 

7.11. Mobile Workforce 
In an embodiment, the disclosed third-party application 

(e.g., third-party application 250) and/or metadata-injection 
module (e.g., metadata-injection module 300) can be used as 
or in conjunction with mobile workforce Software (e.g., 
executing on a mobile user system 130). Specifically, meta 
data-injection module 300 may inject relevant metadata into 
content items generated by geographically-distributed 
employees and/or contractors within an organization. 
The mobile workforce software may utilize workforce 

templates and/or taxonomies for managing activities per 
formed workforce users. For example, a cable technician 
may utilize a template or taxonomy of the mobile workforce 
Software during an inspection, repair, or installation of cable 
equipment (e.g., in accordance with a work order). This 
template or taxonomy may be a checklist, wizard, or the like 
that guides the user through performance of the activity 
(e.g., through various tasks that, collectively, constitute the 
activity). During performance of the activity, the user may 
generate content items 302 (e.g., in response to prompting 
by the mobile workforce Software). Such as taking a photo 
graph, video, etc. Each of these content items 302 may be 
passed (e.g., by the mobile workforce Software) to metadata 
injection module 300, which may inject task-related, activ 
ity-related, user-related, work-order-related, and/or other 
workforce-related information as metadata into each content 
item 302. In such an embodiment, the mobile workforce 
Software itself may act as a metadata source for metadata 
injection module 300, returning the task-related, activity 
related, user-related, work-order-related, and/or other work 
force-related information to metadata-injection module 300 
for injection into content items 302. In addition, the meta 
data-injected content items 304 may be attached to workflow 
elements, such as the work order associated with the activity 
being performed. Thus, work orders may be automatically 
populated with content items, such as photographs, which 
provide visualization of one or more tasks performed for the 
work order. 

8. Example Processing Device 
FIG. 8 is a block diagram illustrating an example wired or 

wireless system 800 that may be used in connection with 
various embodiments described herein. For example, system 
800 may be used as or in conjunction with one or more of 
the mechanisms, processes, methods, or functions (e.g., to 
store and/or execute application 132, third-party application 
250, metadata-injection module 300, and/or one or more of 
metadata sources 220, including modules 310-390) 
described above, and may represent components of server 
110, user system(s) 130, internal system(s) 140A, internal 
system(s) 140B, external system(s) 150, third-party platform 
240, and/or other devices described herein. System 800 can 
be a server or any conventional personal computer, or any 
other processor-enabled device that is capable of wired or 
wireless data communication. Other computer systems and/ 
or architectures may be also used, as will be clear to those 
skilled in the art. 

System 800 preferably includes one or more processors, 
Such as processor 810. Additional processors may be pro 
vided. Such as an auxiliary processor to manage input/ 
output, an auxiliary processor to perform floating point 
mathematical operations, a special-purpose microprocessor 
having an architecture Suitable for fast execution of signal 



US 9,715,506 B2 
71 

processing algorithms (e.g., digital signal processor), a slave 
processor Subordinate to the main processing system (e.g., 
back-end processor), graphics processing unit (GPU), an 
additional microprocessor or controller for dual or multiple 
processor Systems, or a coprocessor. Such auxiliary proces 
sors may be discrete processors or may be integrated with 
processor 810. Examples of processors which may be used 
with system 800 include, without limitation, the PentiumR) 
processor, Core i7(R) processor, and Xeon(R) processor, all of 
which are available from Intel Corporation of Santa Clara, 
Calif. 

Processor 810 is preferably connected to a communica 
tion bus 805. Communication bus 805 may include a data 
channel for facilitating information transfer between storage 
and other peripheral components of system 800. Commu 
nication bus 805 may further provide a set of signals used for 
communication with processor 810, including a data bus, 
address bus, and control bus (not shown). Communication 
bus 805 may comprise any standard or non-standard bus 
architecture Such as, for example, bus architectures compli 
ant with industry standard architecture (ISA), extended 
industry standard architecture (EISA), Micro Channel 
Architecture (MCA), peripheral component interconnect 
(PCI) local bus, or standards promulgated by the Institute of 
Electrical and Electronics Engineers (IEEE) including IEEE 
488 general-purpose interface bus (GPIB), IEEE 696/S-100, 
and the like. 

System 800 preferably includes a main memory 815 and 
may also include a secondary memory 820. Main memory 
815 provides storage of instructions and data for programs 
executing on processor 810, such as one or more of the 
functions and/or modules discussed above. It should be 
understood that programs stored in the memory and 
executed by processor 810 may be written and/or compiled 
according to any suitable language, including without limi 
tation C/C++, Java, JavaScript, Perl, Visual Basic, .NET, and 
the like. Main memory 815 is typically semiconductor-based 
memory such as dynamic random access memory (DRAM) 
and/or static random access memory (SRAM). Other semi 
conductor-based memory types include, for example, Syn 
chronous dynamic random access memory (SDRAM), Ram 
bus dynamic random access memory (RDRAM), 
ferroelectric random access memory (FRAM), and the like, 
including read only memory (ROM). 

Secondary memory 820 may optionally include an inter 
nal memory 825 and/or a removable medium 830, for 
example, a floppy disk drive, a magnetic tape drive, a 
compact disc (CD) drive, a digital versatile disc (DVD) 
drive, other optical drive, a flash memory drive, etc. Remov 
able medium 830 is read from and/or written to in a 
well-known manner. Removable storage medium 830 may 
be, for example, a floppy disk, magnetic tape, CD, DVD, SD 
card, etc. 

Removable storage medium 830 is a non-transitory com 
puter-readable medium having stored thereon computer 
executable code (i.e., software) and/or data. The computer 
software or data stored on removable storage medium 830 is 
read into system 800 for execution by processor 810. 

In alternative embodiments, secondary memory 820 may 
include other similar means for allowing computer programs 
or other data or instructions to be loaded into system 800. 
Such means may include, for example, an external storage 
medium 845 and an interface 840. Examples of external 
storage medium 845 may include an external hard disk drive 
or an external optical drive, or and external magneto-optical 
drive. 

10 

15 

25 

30 

35 

40 

45 

50 

55 

60 

65 

72 
Other examples of secondary memory 820 may include 

semiconductor-based memory Such as programmable read 
only memory (PROM), erasable programmable read-only 
memory (EPROM), electrically erasable read-only memory 
(EEPROM), or flash memory (block-oriented memory simi 
lar to EEPROM). Also included are any other removable 
storage media 830 and communication interface 840, which 
allow software and data to be transferred from an external 
medium 845 to system 800. 

System 800 may include a communication interface 840. 
Communication interface 840 allows software and data to be 
transferred between system 800 and external devices (e.g. 
printers), networks, or information Sources. For example, 
computer software or executable code may be transferred to 
system 800 from a network server via communication 
interface 840. Examples of communication interface 840 
include a built-in network adapter, network interface card 
(NIC), Personal Computer Memory Card International 
Association (PCMCIA) network card, card bus network 
adapter, wireless network adapter, Universal Serial Bus 
(USB) network adapter, modem, a network interface card 
(NIC), a wireless data card, a communications port, an 
infrared interface, an IEEE 1394 fire-wire, or any other 
device capable of interfacing system 800 with a network or 
another computing device. 

Communication interface 840 preferably implements 
industry-promulgated protocol standards, such as Ethernet 
IEEE 802 standards, Fiber Channel, digital subscriber line 
(DSL), asynchronous digital subscriber line (ADSL), frame 
relay, asynchronous transfer mode (ATM), integrated digital 
services network (ISDN), personal communications services 
(PCS), transmission control protocol/Internet protocol 
(TCP/IP), serial line Internet protocol/point to point protocol 
(SLIP/PPP), and so on, but may also implement customized 
or non-standard interface protocols as well. 

Software and data transferred via communication inter 
face 840 are generally in the form of electrical communi 
cation signals 855. These signals 855 are preferably pro 
vided to communication interface 840 via a communication 
channel 850. In one embodiment, communication channel 
850 may be a wired or wireless network, or any variety of 
other communication links. Communication channel 850 
carries signals 855 and can be implemented using a variety 
of wired or wireless communication means including wire or 
cable, fiber optics, conventional phone line, cellular phone 
link, wireless data communication link, radio frequency 
(“RF) link, or infrared link, just to name a few. 

Computer-executable code (i.e., computer programs or 
software, such as the disclosed application 132 or third-party 
application 250) is stored in main memory 815 and/or 
secondary memory 820. Computer programs can also be 
received via communication interface 840 and stored in 
main memory 815 and/or secondary memory 820. Such 
computer programs, when executed, enable system 800 to 
perform the various functions, methods, and processes 
described above. 

In this description, the term “computer-readable medium’ 
is used to refer to any non-transitory computer readable 
storage media used to provide computer executable code 
(e.g., Software and computer programs) to system 800. 
Examples of these media include main memory 815, sec 
ondary memory 820 (including internal memory 825, 
removable medium 830, and external storage medium 845), 
and any peripheral device communicatively coupled with 
communication interface 840 (including a network informa 
tion server or other network device). These non-transitory 



US 9,715,506 B2 
73 

computer readable mediums are means for providing execut 
able code, programming instructions, and Software to system 
8OO. 

In an embodiment that is implemented using software, the 
Software may be stored on a computer-readable medium and 
loaded into system 800 by way of removable medium 830, 
I/O interface 835, or communication interface 840. In such 
an embodiment, the software is loaded into system 800 in 
the form of electrical communication signals 855. The 
software, when executed by processor 810, preferably 
causes processor 810 to perform the inventive features and 
functions previously described herein. 

In an embodiment, I/O interface 835 provides an interface 
between one or more components of system 800 and one or 
more input and/or output devices. Example input devices 
include, without limitation, keyboards, touch screens or 
other touch-sensitive devices, biometric sensing devices, 
computer mice, trackballs, pen-based pointing devices, and 
the like. Examples of output devices include, without limi 
tation, cathode ray tubes (CRTs), plasma displays, light 
emitting diode (LED) displays, liquid crystal displays 
(LCDs), printers, vacuum florescent displays (VFDs), Sur 
face-conduction electron-emitter displays (SEDs), field 
emission displays (FEDs), and the like. 

System 800 also includes optional wireless communica 
tion components that facilitate wireless communication over 
a voice and over a data network. The wireless communica 
tion components comprise an antenna system 870, a radio 
system 865 and a baseband system 860. In system 800, radio 
frequency (RF) signals are transmitted and received over the 
air by antenna system 870 under the management of radio 
system 865. 

In one embodiment, antenna system 870 may comprise 
one or more antennae and one or more multiplexors (not 
shown) that perform a Switching function to provide antenna 
system 870 with transmit and receive signal paths. In the 
receive path, received RF signals can be coupled from a 
multiplexor to a low noise amplifier (not shown) that ampli 
fies the received RF signal and sends the amplified signal to 
radio system 865. 

In alternative embodiments, radio system 865 may com 
prise one or more radios that are configured to communicate 
over various frequencies. In one embodiment, radio system 
865 may combine a demodulator (not shown) and modulator 
(not shown) in one integrated circuit (IC). The demodulator 
and modulator can also be separate components. In the 
incoming path, the demodulator strips away the RF carrier 
signal leaving a baseband receive audio signal, which is sent 
from radio system 865 to baseband system 860. 

If the received signal contains audio information, then 
baseband system 860 decodes the signal and converts it to an 
analog signal. Then, the signal is amplified and sent to a 
speaker. Baseband system 860 also receives analog audio 
signals from a microphone. These analog audio signals are 
converted to digital signals and encoded by baseband system 
860. Baseband system 860 also codes the digital signals for 
transmission and generates a baseband transmit audio signal 
that is routed to the modulator portion of radio system 865. 
The modulator mixes the baseband transmit audio signal 
with an RF carrier signal generating an RF transmit signal 
that is routed to antenna system 870 and may pass through 
a power amplifier (not shown). The power amplifier ampli 
fies the RF transmit signal and routes it to antenna system 
870 where the signal is switched to the antenna port for 
transmission. 

Baseband system 860 is also communicatively coupled 
with processor 810. Central processing unit 810 has access 

5 

10 

15 

25 

30 

35 

40 

45 

50 

55 

60 

65 

74 
to data storage areas 815 and 820. Central processing unit 
810 is preferably configured to execute instructions (i.e., 
computer programs or software) that can be stored in 
memory 815 or secondary memory 820. Computer programs 
can also be received from baseband processor 870 and 
stored in data storage area 815 or in secondary memory 820, 
or executed upon receipt. Such computer programs, when 
executed, enable system 800 to perform the various func 
tions, methods, or processes as previously described. For 
example, data storage areas 815 may include various Soft 
ware modules. 

Various embodiments may also be implemented primarily 
in hardware using, for example, components such as appli 
cation-specific integrated circuits (ASICs), or field-pro 
grammable gate arrays (FPGAs). Implementation of a hard 
ware state machine capable of performing the functions, 
methods, or processes described herein will also be apparent 
to those skilled in the relevant art. Various embodiments 
may also be implemented using a combination of both 
hardware and software. 

Furthermore, those of skill in the art will appreciate that 
the various illustrative logical blocks, modules, circuits, and 
method steps described in connection with the above 
described figures and the embodiments disclosed herein can 
often be implemented as electronic hardware, computer 
software, or combinations of both. To clearly illustrate this 
interchangeability of hardware and Software, various illus 
trative components, blocks, modules, circuits, and steps 
have been described above generally in terms of their 
functionality. Whether such functionality is implemented as 
hardware or Software depends upon the particular applica 
tion and design constraints imposed on the overall system. 
Skilled persons can implement the described functionality in 
varying ways for each particular application, but such imple 
mentation decisions should not be interpreted as causing a 
departure from the scope of the invention. In addition, the 
grouping of functions within a module, block, circuit or step 
is for ease of description. Specific functions or steps can be 
moved from one module, block or circuit to another without 
departing from the invention. 

Moreover, the various illustrative logical blocks, mod 
ules, functions, and methods described in connection with 
the embodiments disclosed herein can be implemented or 
performed with a general-purpose processor, a digital signal 
processor (DSP), an ASIC, FPGA, or other programmable 
logic device, discrete gate or transistor logic, discrete hard 
ware components, or any combination thereof designed to 
perform the functions, methods, or processes described 
herein. A general-purpose processor can be a microproces 
Sor, but in the alternative, the processor can be any proces 
Sor, controller, microcontroller, or state machine. A proces 
Sor can also be implemented as a combination of computing 
devices, for example, a combination of a DSP and a micro 
processor, a plurality of microprocessors, one or more 
microprocessors in conjunction with a DSP core, or any 
other such configuration. 

Additionally, the steps of a method or algorithm described 
in connection with the embodiments disclosed herein can be 
embodied directly in hardware, in a software module 
executed by a processor, or in a combination of the two. A 
software module can reside in RAM memory, flash memory, 
ROM memory, EPROM memory, EEPROM memory, reg 
isters, hard disk, a removable disk, a CD-ROM, or any other 
form of storage medium including a network Storage 
medium. An exemplary storage medium can be coupled to 
the processor Such that the processor can read information 
from, and write information to, the storage medium. In the 



US 9,715,506 B2 
75 

alternative, the storage medium can be integral to the 
processor. The processor and the storage medium can also 
reside in an ASIC. 
Any of the software components described herein may 

take a variety of forms. For example, a component may be 
a stand-alone software package, or it may be a software 
package incorporated as a “tool” in a larger Software prod 
uct. It may be downloadable from a network, for example, 
a website, as a stand-alone product or as an add-in package 
for installation in an existing software application. It may 
also be available as a client-server Software application, as 
a web-enabled software application, and/or as a mobile 
application. 
The above description of the disclosed embodiments is 

provided to enable any person skilled in the art to make or 
use the invention. Various modifications to these embodi 
ments will be readily apparent to those skilled in the art, and 
the general principles described herein can be applied to 
other embodiments. Thus, it is to be understood that the 
description and drawings presented herein represent a pres 
ently preferred embodiment, and are therefore representative 
of the subject matter which is broadly contemplated by this 
application. It is further understood that the scope of the 
present application fully encompasses other embodiments 
that may become obvious to those skilled in the art and that 
the scope of the present application is accordingly not 
limited. 
What is claimed is: 
1. A method comprising using at least one hardware 

processor of a mobile device having a camera to: 
create one or more content items by at least capturing an 

image, via the camera, as at least one of the one or more 
content items; 

retrieve data from a plurality of metadata sources, wherein 
the retrieved data comprises a location corresponding 
to a location at which the image was captured; 

generate a visual depiction of metadata for at least one of 
the one or more content items based on the retrieved 
data, wherein the visual depiction of metadata com 
prises a map image having a visual indication repre 
senting the location at which the image was captured; 
and 

generate a composite content item comprising a single 
image file that combines at least a portion of each of the 
one or more content items, including at least a portion 
of the captured image of the at least one content item, 
with the visual depiction of the metadata, including the 
map image having the visual indication representing 
the location at which the image was captured. 

2. The method of claim 1, wherein the visual depiction of 
metadata comprises text. 

3. The method of claim 1, wherein the composite content 
item comprises at least one composite image comprising the 
at least a portion of each of the one or more content items 
and the visual depiction of the metadata. 

4. The method of claim 3, wherein the composite content 
item is a video and the at least one composite image is a 
video frame within the video. 

5. The method of claim 1, wherein the composite content 
item further comprises embedded metadata fields, and 
wherein the method further comprises using the at least one 
hardware processor to: 

generate metadata based on the retrieved data; and 
add the generated metadata to the embedded metadata 

fields of the composite content item. 
6. The method of claim 1, wherein generating the com 

posite content item comprises: 

10 

15 

25 

30 

35 

40 

45 

50 

55 

60 

65 

76 
accessing a template comprising an arrangement; and 
arranging the at least a portion of each of the one or more 

content items and the visual depiction of the metadata 
in the composite content item according to the arrange 
ment in the template. 

7. The method of claim 6, wherein the one or more content 
items comprise a plurality of content items. 

8. The method of claim 7, wherein the plurality of content 
items comprises a plurality of images, and wherein the 
composite content item comprises a composite of at least a 
portion of each of the plurality of images. 

9. The method of claim 7, wherein receiving the plurality 
of content items comprises: 

receiving a first one of the plurality of content items; 
retrieving first data from at least one of the plurality of 

metadata sources based on the first content item; and 
retrieving at least a second one of the plurality of content 

items based on the retrieved first data. 

10. The method of claim 9, wherein the first content item 
is an image representing a first asset, and wherein the second 
content item is an image representing a second asset that is 
associated with the first asset at the at least one metadata 
SOUC. 

11. The method of claim 9, wherein the first content item 
is an image representing a first asset, and wherein the second 
content item is an image representing a component of the 
first asset that is associated with the first asset at the at least 
one metadata source. 

12. The method of claim 7, further comprising generating 
one or more user interfaces that prompt a user to acquire 
each of the plurality of content items. 

13. The method of claim 12, wherein the one or more user 
interfaces prompt the user to acquire an image of a receipt, 
Such that the plurality of content items comprise an image of 
a receipt. 

14. The method of claim 13, further comprising using the 
at least one hardware processor to: 

acquire text from the image of the receipt using optical 
character recognition; and 

add the text to metadata associated with the composite 
content item. 

15. The method of claim 12, wherein the one or more user 
interfaces prompt the user to acquire an image of an odom 
eter, Such that the plurality of content items comprise a first 
image of an odometer. 

16. The method of claim 15, wherein the one or more user 
interfaces prompt the user to acquire a second image of the 
odometer, such that the plurality of content items further 
comprise a second image of the odometer, and wherein the 
method further comprises using the at least one hardware 
processor to: 

convert the first image of the odometer into a first odom 
eter reading; 

convert the second image of the odometer into a second 
odometer reading: 

calculate a difference between the first odometer reading 
and the second odometer reading; and 

add the calculated difference to metadata associated with 
the composite content item. 

17. The method of claim 12, wherein the one or more user 
interfaces prompt the user to acquire each of the plurality of 
content items according to a predefined taxonomy that 
identifies a plurality of content types to be acquired. 



US 9,715,506 B2 
77 

18. A system comprising: 
a Camera, 
at least one hardware processor; and 
one or more software modules that, when executed by the 

at least one hardware processor, 
capture an image via the camera, 
retrieve data from a plurality of metadata sources, 

wherein the retrieved data comprises a location cor 
responding to a location at which the image was 
captured, 

generate a visual depiction of metadata for the captured 
image based on the retrieved data, wherein the visual 
depiction of metadata comprises a map image having 
a visual indication representing the location at which 
the image was captured, and 

generate a single image file that combines at least a 
portion of the captured image with the map image 
having the visual indication representing the location 
at which the image was captured. 

10 

15 

78 
19. A non-transitory computer-readable medium having 

instructions stored thereon, wherein the instructions, when 
executed by a processor, cause the processor to: 

capture an image via a camera: 
retrieve data from a plurality of metadata sources, wherein 

the retrieved data comprises a location corresponding 
to a location at which the image was captured; 

generate a visual depiction of metadata for the captured 
image based on the retrieved data, wherein the visual 
depiction of metadata comprises a map image having a 
visual indication representing the location at which the 
image was captured; and 

generate a single image file that combines at least a 
portion of the captured image with the map image 
having the visual indication representing the location at 
which the image was captured. 

k k k k k 


